Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management
暂无分享,去创建一个
[1] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[2] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[3] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[4] W. Andrew,et al. LO, and A. , 1988 .
[5] J. Einmahl. The empirical distribution function as a tail estimator. , 1990 .
[6] Marcia M. A. Schafgans,et al. The tail index of exchange rate returns , 1990 .
[7] R. Engle,et al. Semiparametric ARCH Models , 1991 .
[8] R. Chou,et al. ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .
[9] F. Diebold,et al. Modeling Volatility Dynamics , 1995 .
[10] Kevin D. Hoover,et al. Macroeconometrics : developments, tensions, and prospects , 1995 .
[11] J. Huston McCulloch,et al. 13 Financial applications of stable distributions , 1996 .
[12] Francis X. Diebold,et al. The Uncertain Unit Root in Real GNP: Comment , 1996 .
[13] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[14] Jón Dańıelsson,et al. Tail Index and Quantile Estimation with Very High Frequency Data , 1997 .
[15] Extreme Returns, Tail Estimation, and Value-at-Risk , 1997 .
[16] Adrian Pagan,et al. Estimating the Density Tail Index for Financial Time Series , 1997, Review of Economics and Statistics.
[17] Jon Danielsson,et al. Beyond the Sample: Extreme Quantile and Probability Estimation , 1998 .