Succinct Matrix Approximation and Efficient k-NN Classification
暂无分享,去创建一个
[1] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[2] T. Landauer,et al. Indexing by Latent Semantic Analysis , 1990 .
[3] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[4] Heikki Mannila,et al. Local and Global Methods in Data Mining: Basic Techniques and Open Problems , 2002, ICALP.
[5] Uriel Feige,et al. Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.
[6] Margaret H. Dunham,et al. Data Mining: Introductory and Advanced Topics , 2002 .
[7] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[8] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[9] Jieping Ye,et al. Generalized Low Rank Approximations of Matrices , 2005, Machine Learning.
[10] U. Feige,et al. Spectral techniques applied to sparse random graphs , 2005 .
[11] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[12] N. Alon,et al. On the concentration of eigenvalues of random symmetric matrices , 2000, math-ph/0009032.
[13] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[14] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[15] Larry Wasserman,et al. All of Statistics: A Concise Course in Statistical Inference , 2004 .
[16] Ziv Bar-Yossef,et al. Sampling lower bounds via information theory , 2003, STOC '03.
[17] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[18] Susan T. Dumais,et al. Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..