Effects of large horizontal winds on the equatorial electrojet

[1] The effects of large winds on the low-latitude E region ionosphere and the equatorial electrojet in particular are analyzed theoretically, computationally, and experimentally. The principles that govern the relationship between electric fields, currents, and winds in steady flows in the ionosphere are reviewed formally. A three-dimensional numerical model of low-latitude ionospheric electrostatic potential is then described. Scaled wind profiles generated by the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere/mesosphere electrodynamics general circulation model (TIME-GCM) are used as inputs for the potential model. The model shows that the horizontal wind component drastically modifies the vertical polarization electric field in the electrojet and drives strong zonal and meridional currents at higher dip latitudes outside the electrojet region. Comparison between the model output and coherent scatter radar observations of plasma irregularities in the electrojet indicate that strong winds and wind shears are present in the E region over Jicamarca that are roughly consistent with NCAR model wind predictions if the amplitudes of the latter are increased by about 50%.

[1]  D. Hysell,et al.  Ionospheric electric field estimates from radar observations of the equatorial electrojet , 2000 .

[2]  S. Kato Electric field and wind motion at the magnetic equator , 1973 .

[3]  M. Larsen,et al.  Observations of altitudinal and latitudinal E‐region neutral wind gradients near sunset at the magnetic equator , 1997 .

[4]  D. Cunnold The equatorial electrojet. , 1978 .

[5]  C. Reddy,et al.  Equivalent circuit analysis of neutral wind effects on equatorial electrojet , 1978, Nature.

[6]  R. Walterscheid,et al.  Modified geostrophy in the thermosphere , 1995 .

[7]  B. Anandarao,et al.  Electric fields by gravity wave winds in the equatorial ionosphere , 1977 .

[8]  D. T. Farley,et al.  Vertical structure of the VHF backscattering region in the equatorial electrojet and the gradient drift instability , 1975 .

[9]  E. Bonelli,et al.  The prereversal enhancement of the zonal electric field in the equatorial ionosphere , 1986 .

[10]  John C. Adams,et al.  MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial d , 1989 .

[11]  Q. Zhou,et al.  Incoherent scatter radar measurement of vertical winds in the mesosphere , 2000 .

[12]  J. Forbes,et al.  Atmospheric solar tides and their electrodynamic effects—II. The equatorial electrojet , 1976 .

[13]  D. T. Farley,et al.  The Condor equatorial electrojet campaign: radar results , 1987 .

[14]  Miguel F. Larsen,et al.  Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements , 2002 .

[15]  Junhu Du,et al.  Simulating the ionospheric dynamo - II. Equatorial electric fields , 1999 .

[16]  B. Fejer The equatorial ionospheric electric fields. A review , 1981 .

[17]  M. Crochet,et al.  Comparison of equatorial electrojet models , 1977 .

[18]  D. T. Farley,et al.  Interferometer studies of equatorial F region irregularities and drifts , 1981 .

[19]  Erhan Kudeki,et al.  Postsunset vortex in equatorial F‐region plasma drifts and implications for bottomside spread‐F , 1999 .

[20]  L. Bossy,et al.  International Reference Ionosphere: Past, present, and future. I - Electron density. II - Plasma temperatures, ion composition and ion drift , 1993 .

[21]  Henry Rishbeth,et al.  Polarization fields produced by winds in the equatorial F-region , 1971 .

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  D. Fritts,et al.  Spectral Estimates of Gravity Wave Energy and Momentum Fluxes. Part II: Parameterization of Wave Forcing and Variability , 1993 .

[24]  Raymond G. Roble,et al.  The vertical and horizontal distribution of CO2 densities in the upper mesosphere and lower thermosphere as measured by CRISTA , 2002 .

[25]  D. Crain,et al.  Effects of electrical coupling on equatorial ionospheric plasma motions: When is the F region a dominant driver in the low-latitude dynamo? , 1993 .

[26]  M. Nicolet The collision frequency of electrons in the ionosphere , 1953 .

[27]  Wolfgang Hackbusch,et al.  Multigrid Methods III , 1991 .

[28]  C. Reddy,et al.  Retrieval of east-west wind in the equatorial electrojet from the local wind-generated electric field , 1995 .

[29]  D. T. Farley A theory of electrostatic fields in the ionosphere at nonpolar geomagnetic latitudes , 1960 .

[30]  Donald T. Farley,et al.  Theory of equatorial electrojet plasma waves: new developments and current status , 1985 .

[31]  B. Balsley Electric fields in the equatorial ionosphere: A review of techniques and measurements , 1973 .

[32]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[33]  G. Haerendel,et al.  Vertical winds and turbulence over Thumba , 1978 .

[34]  B. Anandarao,et al.  EFFECTS OF VERTICAL SHEARS IN THE ZONAL WINDS ON THE ELECTROJET , 1979 .

[35]  D. Bilitza,et al.  International Reference Ionosphere - Past, Present, Future , 1993 .

[36]  C. Reddy,et al.  Height and latitude structure of electric fields and currents due to local east-west winds in the equatorial electrojet , 1981 .

[37]  P. Mayaud,et al.  Equatorial electrojet and regular daily variation SR—III. Comparison of observations with a physical model , 1976 .

[38]  Timothy Fuller-Rowell,et al.  Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data , 1987 .

[39]  B. Anandarao,et al.  Vertical winds as a plausible cause for equatorial counter electrojet , 1980 .

[40]  N. Spencer,et al.  The Earth's thermospheric superrotation from Dynamics Explorer 2 , 1984 .

[41]  W. Ecklund,et al.  On the nature of radar echoes below 95 km during counter streaming in the equatorial electrojet , 1999 .

[42]  Susan K. Avery,et al.  Empirical wind model for the upper, middle and lower atmosphere , 1996 .

[43]  D. T. Farley,et al.  Radar measurements of neutral winds and temperatures in the equatorial E region , 1976 .

[44]  Raymond G. Roble,et al.  A thermosphere/ionosphere general circulation model with coupled electrodynamics , 1992 .

[45]  R. Schreiber Numerical Methods for Partial Differential Equations , 1999 .

[46]  G. Haerendel,et al.  The role of the equatorial electrojet in the evening ionosphere , 1992 .

[47]  Adams Multigrid software for elliptic partial differential equations: MUDPACK. Technical note , 1991 .

[48]  H. Rishbeth The F-region dynamo , 1981 .

[49]  R. W. Spiro,et al.  A model of the high‐latitude ionospheric convection pattern , 1982 .

[50]  P. C. Kendall,et al.  Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds , 1974 .

[51]  K. Viswanathan,et al.  Electric fields and currents in the equatorial electrojet deduced from VHF radar observations—I. A method of estimating electric fields , 1987 .

[52]  Raymond G. Roble,et al.  A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km) , 1994 .

[53]  Chester S. Gardner,et al.  Heat flux observations in the mesopause region above Haleakala , 1995 .

[54]  A. Richmond Equatorial electrojet-I. Development of a model including winds and instabilities , 1973 .

[55]  G. Haerendel,et al.  Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow , 1992 .

[56]  Wayne H. Schubert,et al.  Multigrid methods for elliptic problems: a review , 1986 .

[57]  D. T. Farley A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field , 1959 .