External geophysics, climate and environment On the water and energy cycles in the Tropics

The water and energy cycles are major elements of the Earth climate. These cycles are especially active in the intertropical belt where satellites provide the most suitable observational platform. The history of Earth observations of the water cycle and of the radiation budget viewed from space reveals that the fundamental questions from the early times are still relevant for today's research. The last 2 decades have seen a number of milestones regarding the documentation of rainfall, mesoscale convective systems (MCS), water vapour and radiation at the top of the atmosphere (TOA). Beyond dedicated missions that provided enhanced characterizations of some elements of the atmospheric water cycle and field campaigns that allowed the gathering of validation data, the advent of the long record of meteorological satellites lead to new questioning on the homogenisation of the data time series, etc. The use of this record to document the tropical climate brought new results of the distribution of humidity and reinforced the understanding of some robust features of the African monsoon. Challenges for the immediate future concerns the deepening of the understanding of the role of cloud systems in the monsoon circulation, the downscaling of the documentation of the water and energy cycle at the scale of these cloud systems, the research of better adequation between the users and the satellite estimate of rainfall and finally a much needed methodological effort to build exploitable time series for the estimation of climatic trends in the water and energy cycle in the Tropics. The required observations to address these challenges are rapidly presented with emphasis on the upcoming Megha-Tropiques (MT) mission.

[1]  A. Evan,et al.  Arguments against a physical long‐term trend in global ISCCP cloud amounts , 2007 .

[2]  A new index to estimate precipitation using cloud growing rate , 2009 .

[3]  Robert F. Adler,et al.  Tropical Rainfall Variability on Interannual-to-Interdecadal and Longer Time Scales Derived from the GPCP Monthly Product , 2007 .

[4]  D. N. Sikdar,et al.  Estimating GATE rainfall with geosynchronous satellite images , 1979 .

[5]  T. Lebel,et al.  Mesoscale Convective System Rainfall in the Sahel , 2002 .

[6]  S. Manabe,et al.  On the Radiative Equilibrium and Heat Balance of the Atmosphere , 1961 .

[7]  H. Douville,et al.  Réponse du cycle hydrologique aux forçages anthropiques : Que nous disent les dernières simulations du GIEC ? , 2007 .

[8]  Darren L. Jackson,et al.  Trends in upper‐tropospheric humidity , 2001 .

[9]  J. Haywood,et al.  The AMMA field campaigns: multiscale and multidisciplinary observations in the West African region , 2010 .

[10]  Bruce A. Wielicki,et al.  Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget , 2002, Science.

[11]  D. Corney,et al.  The Geostationary Earth Radiation Budget project , 2005 .

[12]  R. Roca,et al.  Extratropical Dry-Air Intrusions into the West African Monsoon Midtroposphere: An Important Factor for the Convective Activity over the Sahel , 2005 .

[13]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[14]  M. Desbois,et al.  Megha-tropiques : un satellite hydrométéorologique franco-indien , 2007 .

[15]  Ziad S. Haddad,et al.  Retrieval of Latent Heating from TRMM Measurements , 2006 .

[16]  M. Desbois,et al.  Radiation budget estimates over Africa and surrounding oceans: inter-annual comparisons , 2006 .

[17]  M. Rajeevan,et al.  Net Cloud Radiative Forcing at the Top of the Atmosphere in the Asian Monsoon Region , 2000 .

[18]  Christian D. Kummerow,et al.  Rain Retrieval from TMI Brightness Temperature Measurements Using a TRMM PR-Based Database , 2006 .

[19]  Roy W. Spencer,et al.  How dry is the tropical free troposphere? : Implications for global warming theory , 1997 .

[20]  A. Genio,et al.  Deep Convective System Evolution over Africa and the Tropical Atlantic , 2007 .

[21]  Alain Protat,et al.  Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and Evaluation of Multiple Scattering Effects in Spaceborne Measurements , 2008 .

[22]  Bruce A. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part I: Methodology and Preliminary Results of the 1998 El Niño/2000 La Niña , 2005 .

[23]  Veerabhadran Ramanathan,et al.  Comparison of cloud forcing derived from the Earth Radiation Budget Experiment with that simulated by the NCAR Community Climate Model , 1990 .

[24]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[25]  K. Browning,et al.  Airflow in convective storms , 1962 .

[26]  Thomas H. Vonder Haar,et al.  The annual radiation balance of the earth-atmosphere system during 1969-70 from Nimbus 3 measurements. , 1973 .

[27]  H. Brogniez,et al.  Interannual and intraseasonal variabilities of the Free Tropospheric Humidity using METEOSAT Water Vapor channel over the Tropics. , 2004 .

[28]  E. Barrett,et al.  THE ESTIMATION OF MONTHLY RAINFALL FROM SATELLITE DATA , 1970 .

[29]  F. Chopin,et al.  An intercomparison of 10-day satellite precipitation products during West African monsoon , 2011 .

[30]  Hélène Brogniez,et al.  A clear-sky radiance archive from Meteosat "water vapor" observations. , 2006 .

[31]  Govindasamy Bala,et al.  Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate , 2006 .

[32]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[33]  Thomas L. Bell,et al.  Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model , 2003 .

[34]  R. Roebeling,et al.  Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF) , 2008 .

[35]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[36]  Abdou Ali,et al.  Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006 , 2008 .

[37]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[38]  F. Barlier Observations of the Earth’s atmosphere: Introductory remarks , 2010 .

[39]  Phillip A. Arkin,et al.  The Relationship between Fractional Coverage of High Cloud and Rainfall Accumulations during GATE over the B-Scale Array , 1979 .

[40]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[41]  F. Möller Atmospheric water vapor measurements at 6–7 microns from a satellite , 1961 .

[42]  P. Waldteufel,et al.  The Dynamics of Polar Jet Streams as Depicted by the METEOSAT WV Channel Radiance Field , 1981 .

[43]  Robert S. Kandel,et al.  The ScaRaB Earth Radiation Budget Dataset , 1998 .

[44]  A. Hou The Global Precipitation Measurement (GPM) Mission: An Overview , 2006 .

[45]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[46]  L. A. Pakhomov,et al.  The ScaRaB-Resurs Earth Radiation Budget Dataset and First Results , 2001 .

[47]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[48]  Robert Benjamin Lee,et al.  Reexamination of the Observed Decadal Variability of the Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data , 2006 .

[49]  Edwin F. Harrison,et al.  Earth Radiation Budget Experiment (ERBE) archival and April 1985 results , 1989 .

[50]  Ralf Toumi,et al.  Observed Interannual Variability of Tropical Troposphere Relative Humidity , 2004 .

[51]  E. Barrett Forecasting Daily Rainfall From Satellite Data , 1973 .

[52]  S. Nieuwolt Tropical rainfall variability — The agroclimatic impact , 1982 .

[53]  Syukuro Manabe,et al.  On the Radiative Equilibrium and Heat Balance of the Atmosphere , 1961 .

[54]  J. Schmetz,et al.  CloudSat shedding new light on high‐reaching tropical deep convection observed with Meteosat , 2008 .

[55]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[56]  E. Hilsenrath,et al.  Meteorological applications of the Nimbus 4 Temperature-Humidity Infrared Radiometer, 6.7 micron channel data , 1972 .

[57]  Carsten Standfuss,et al.  Top-of-Atmosphere Radiance-to-Flux Conversion in the SW Domain for the ScaRaB-3 Instrument on Megha-Tropiques , 2009 .

[58]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[59]  H. Treut,et al.  Interannual Variations of Summer Monsoons: Sensitivity to Cloud Radiative Forcing , 1998 .

[60]  J. Michael Fritsch,et al.  The global population of mesoscale convective complexes , 1997 .

[61]  Frédéric Parol,et al.  An improved derivation of the top‐of‐atmosphere albedo from POLDER/ADEOS‐2: Narrowband albedos , 2005 .

[62]  D. F. Young,et al.  The Influence of the 1998 El Niño upon Cloud-Radiative Forcing over the Pacific Warm Pool. , 2001 .

[63]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[64]  H. Brogniez,et al.  A study of the free tropospheric humidity interannual variability using meteosat data and an advection-condensation transport model. , 2009 .

[65]  R. Roca,et al.  EPSAT-SG: a satellite method for precipitation estimation; its concepts and implementation for the AMMA experiment , 2010 .

[66]  M. Desbois,et al.  A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data , 2005 .

[67]  J. Srinivasan,et al.  What have we learned about the Indian monsoon from satellite data , 2007 .

[68]  T. L’Ecuyer,et al.  The Tropical Atmospheric Energy Budget from the TRMM Perspective. Part II: Evaluating GCM Representations of the Sensitivity of Regional Energy and Water Cycles to the 1998–99 ENSO Cycle , 2007 .

[69]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[70]  Michel Desbois,et al.  A multisatellite analysis of deep convection and its moist environment over the Indian Ocean during the winter monsoon , 2002 .

[71]  F. Bretherton,et al.  Upper tropospheric relative humidity from the GOES 6.7 μm channel: method and climatology for July 1987 , 1993 .

[72]  R. Houze Mesoscale convective systems , 2004 .

[73]  M. Desbois,et al.  A new METEOSAT “water vapor” archive for climate studies , 2003 .

[74]  Relation between METEOSAT Water Vapor Radiance Fields and Large Scale Tropical Circulation Features , 1990 .

[75]  B. Wielicki,et al.  Statistical Analyses of Satellite Cloud Object Data from CERES. Part IV: Boundary-layer Cloud Objects During 1998 El Niño , 2008 .

[76]  Robert S. Kandel,et al.  ScaRaB Earth radiation budget scanning radiometer , 1991, Defense, Security, and Sensing.

[77]  The Role of Cloud Radiative Forcing in the Asian-Pacific Summer Monsoon , 2007 .

[78]  C. Thorncroft,et al.  African Monsoon Multidisciplinary Analysis: An International Research Project and Field Campaign , 2006 .

[79]  R. Kandel,et al.  Inversion and space-time-averaging algorithms for ScaRaB (Scanner for the Earth Radiation Budget). Comparison with ERBE , 1995 .

[80]  M. Haeffelin,et al.  Assessment of physical parameterizations using a global climate model with stretchable grid and nudging , 2007 .

[81]  C. Tsou,et al.  The Cloud Radiative Forcing over Asian-Pacific Summer Monsoon Region , 2003 .

[82]  David P. Yorty,et al.  WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH , 2006 .

[83]  J. Kiehl On the Observed Near Cancellation between Longwave and Shortwave Cloud Forcing in Tropical Regions , 1994 .