Therapeutic Hypothesis Testing With Rodent Brain Tumor Models

[1]  S. Shamim,et al.  Childhood Medulloblastoma. , 2020, JPMA. The Journal of the Pakistan Medical Association.

[2]  Haruki Niwa,et al.  A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging , 2016, Nature Communications.

[3]  T. O’Halloran,et al.  Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors1 , 2015, Neoplasia.

[4]  Andrew H. Beck,et al.  Noninvasive imaging of tumor burden and molecular pathways in mouse models of cancer. , 2015, Cold Spring Harbor protocols.

[5]  G. Hostetter,et al.  Establishment of genetically diverse patient-derived xenografts of colorectal cancer. , 2014, American journal of cancer research.

[6]  C. James,et al.  Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma , 2014, Nature Medicine.

[7]  Christopher M. Jackson,et al.  Focal Radiation Therapy Combined with 4-1BB Activation and CTLA-4 Blockade Yields Long-Term Survival and a Protective Antigen-Specific Memory Response in a Murine Glioma Model , 2014, PloS one.

[8]  F. Ishikawa,et al.  Human cancer growth and therapy in immunodeficient mouse models. , 2014, Cold Spring Harbor protocols.

[9]  C. James,et al.  Immunocompetent murine models for the study of glioblastoma immunotherapy , 2014, Journal of Translational Medicine.

[10]  Y. Cheng,et al.  Durable Therapeutic Efficacy Utilizing Combinatorial Blockade against IDO, CTLA-4, and PD-L1 in Mice with Brain Tumors , 2014, Clinical Cancer Research.

[11]  Alfonso Valencia,et al.  Integrated Next-Generation Sequencing and Avatar Mouse Models for Personalized Cancer Treatment , 2014, Clinical Cancer Research.

[12]  Jennifer A. Prescher,et al.  A synthetic luciferin improves bioluminescence imaging in live mice , 2014, Nature Methods.

[13]  J. Hagan,et al.  Vertebrate animal models of glioma: understanding the mechanisms and developing new therapies. , 2013, Biochimica et biophysica acta.

[14]  E. Schröck,et al.  A Novel, Diffusely Infiltrative Xenograft Model of Human Anaplastic Oligodendroglioma with Mutations in FUBP1, CIC, and IDH1 , 2013, PloS one.

[15]  H. Woo,et al.  Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. , 2013, Cell reports.

[16]  Ewa M Nowosielska,et al.  Effect of Low Doses of Low-Let Radiation on the Innate Anti-Tumor Reactions in Radioresistant and Radiosensitive Mice , 2012, Dose-response : a publication of International Hormesis Society.

[17]  S. Weiss,et al.  An in vivo patient-derived model of endogenous IDH1-mutant glioma. , 2012, Neuro-oncology.

[18]  Barbara S. Paugh,et al.  Targeted Therapy for BRAFV600E Malignant Astrocytoma , 2011, Clinical Cancer Research.

[19]  S. Lowe,et al.  Report from the fifth National Cancer Institute Mouse Models of Human Cancers Consortium Nervous System Tumors Workshop. , 2011, Neuro-oncology.

[20]  J. Sarkaria,et al.  Establishment, Maintenance, and In Vitro and In Vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery , 2011, Current protocols in pharmacology.

[21]  Kirsten Schmieder,et al.  Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma , 2011, Acta Neuropathologica.

[22]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[23]  R. Bjerkvig,et al.  A reproducible brain tumour model established from human glioblastoma biopsies , 2009, BMC Cancer.

[24]  Nicholas J. Wang,et al.  Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. , 2009, Neuro-oncology.

[25]  Mark Bernstein,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[26]  Rolf F. Barth,et al.  Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas , 2009, Journal of Neuro-Oncology.

[27]  J. Pontén,et al.  Cytogenetical studies with G‐band technique of established cell lines of human malignant gliomas , 2009 .

[28]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[29]  W. Couldwell,et al.  A comparison of the cell lines used in meningioma research. , 2008, Surgical neurology.

[30]  R. Mason,et al.  Pten haploinsufficiency accelerates formation of high-grade astrocytomas. , 2008, Cancer research.

[31]  Yuri Kotliarov,et al.  Genomic Changes and Gene Expression Profiles Reveal That Established Glioma Cell Lines Are Poorly Representative of Primary Human Gliomas , 2008, Molecular Cancer Research.

[32]  M. Berger,et al.  Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. , 2007, Journal of neurosurgery.

[33]  D. Bigner,et al.  Systemic CTLA-4 Blockade Ameliorates Glioma-Induced Changes to the CD4+ T Cell Compartment without Affecting Regulatory T-Cell Function , 2007, Clinical Cancer Research.

[34]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[35]  E. Holland,et al.  Genetically engineered models have advantages over xenografts for preclinical studies. , 2006, Cancer research.

[36]  C. James,et al.  Use of an Orthotopic Xenograft Model for Assessing the Effect of Epidermal Growth Factor Receptor Amplification on Glioblastoma Radiation Response , 2006, Clinical Cancer Research.

[37]  Ning Lin,et al.  Noninvasive Bioluminescence Imaging of Luciferase Expressing Intracranial U87 Xenografts: Correlation with Magnetic Resonance Imaging Determined Tumor Volume and Longitudinal Use in Assessing Tumor Growth and Antiangiogenic Treatment Effect , 2006, Neurosurgery.

[38]  Dawen Zhao,et al.  Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. , 2005, Cancer cell.

[39]  C. James,et al.  Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. , 2005, Neuro-oncology.

[40]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[41]  L. White,et al.  The role of xenografting in pediatric brain tumor research with specific emphasis on medulloblastoma/primitive neuroectodermal tumors of childhood. , 2003, In vivo.

[42]  V. P. Collins,et al.  Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. , 2001, The American journal of pathology.

[43]  D. Gutmann,et al.  Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. , 2001, Cancer research.

[44]  A. L. Le Faou,et al.  Analysis of Tissue Chimerism in Nude Mouse Brain and Abdominal Xenograft Models of Human Glioblastoma Multiforme: What Does It Tell Us About the Models and About Glioblastoma Biology and Therapy? , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[45]  A. Merlo,et al.  Frequent Co‐Alterations of TP53, p16/CDKN2A, p14ARF, PTEN Tumor Suppressor Genes in Human Glioma Cell Lines. , 1999, Brain pathology.

[46]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[47]  W. Lee Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. , 1990, Neurosurgery.

[48]  W. J. Oakes,et al.  Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts. , 1990, Cancer research.

[49]  J. Trojanowski,et al.  Phenotypic Analysis of Four Human Medulloblastoma Cell Lines and Transplantable Xenografts , 1989, Journal of neuropathology and experimental neurology.

[50]  D. Bigner,et al.  Relationship of in Vitro Morphologic and Growth Characteristics of Established Human Glioma‐derived Cell Lines to Their Tumorigenicity in Athymic Nude Mice , 1981, Journal of neuropathology and experimental neurology.

[51]  J. Hoffmann,et al.  Predictive In Vivo Models for Oncology. , 2016, Handbook of experimental pharmacology.

[52]  D. Greiner,et al.  Generation of Immunodeficient Mice Bearing Human Immune Systems by the Engraftment of Hematopoietic Stem Cells. , 2016, Methods in molecular biology.

[53]  Yusuke Ishida,et al.  Brain metastasis: clinical characteristics, pathological findings and molecular subtyping for therapeutic implications , 2015, Brain Tumor Pathology.

[54]  L. Shultz,et al.  Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. , 2014, Methods in molecular biology.

[55]  Cranmer Terrace ''Of mice and men'': values and liabilities of the athymic nude mouse model in anticancer drug development , 2004 .

[56]  J. Pontén,et al.  Cytogentical studies with G-band technique of established cell lines of human malignant glomas. , 1974, Hereditas.