Flexible, free-standing and dendrite-free iron metal anodes enabled by MXene frameworks for aqueous Fe metal dual-ion batteries

[1]  Jianchuang Wang,et al.  Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries , 2022, Energy Storage Materials.

[2]  Xiang Wu,et al.  Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries , 2022, Nanomaterials.

[3]  S. Indris,et al.  High‐Voltage Aqueous Mg‐Ion Batteries Enabled by Solvation Structure Reorganization , 2022, Advanced Functional Materials.

[4]  Shenglin Xiong,et al.  LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries , 2022, Chemical Engineering Journal.

[5]  D. Snihirova,et al.  High-energy and durable aqueous magnesium batteries: Recent advances and perspectives , 2021, Energy Storage Materials.

[6]  Jian Jiang,et al.  Elevating kinetics of passivated Fe anodes with NH4Cl regulator: Toward low-cost, long-cyclic and green cathode-free Fe-ion aqueous batteries , 2021, Nano Research.

[7]  Xiulei Ji,et al.  Fe‐Ion Bolted VOPO4∙2H2O as an Aqueous Fe‐Ion Battery Electrode , 2021, Advanced materials.

[8]  C. Zhi,et al.  High‐Rate Aqueous Aluminum‐Ion Batteries Enabled by Confined Iodine Conversion Chemistry , 2021, Small methods.

[9]  Yue Chen,et al.  High‐Energy SWCNT Cathode for Aqueous Al‐Ion Battery Boosted by Multi‐Ion Intercalation Chemistry , 2021, Advanced Energy Materials.

[10]  Jiayan Luo,et al.  Rechargeable aqueous aluminum-FeFe(CN)6 battery with artificial interphase through deep eutectic solution , 2021 .

[11]  T. He,et al.  CoPSe: A New Ternary Anode Material for Stable and High‐Rate Sodium/Potassium‐Ion Batteries , 2021, Advanced materials.

[12]  David M. Reed,et al.  Crossroads in the renaissance of rechargeable aqueous zinc batteries , 2021 .

[13]  B. Liu,et al.  Water-in-salt electrolyte for safe and high-energy aqueous battery , 2021 .

[14]  William E. Mustain,et al.  Practical assessment of the performance of aluminium battery technologies , 2020 .

[15]  Lei Zheng,et al.  Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries , 2020 .

[16]  Zaiping Guo,et al.  Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries , 2020 .

[17]  Hongbo Liu,et al.  Hollow carbon nanospheres for capacitive-dominated potassium-ion storage , 2020 .

[18]  Yitai Qian,et al.  Recent Advances of Emerging 2D MXene for Stable and Dendrite‐Free Metal Anodes , 2020, Advanced Functional Materials.

[19]  Huan Ye,et al.  Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries , 2020 .

[20]  Guangjie Shao,et al.  Stable Electrochemical Li Plating/Stripping Behavior by Anchoring MXene Layers on 3D Conductive Skeletons. , 2020, ACS applied materials & interfaces.

[21]  Dong Kyu Lee,et al.  CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption. , 2020, ACS nano.

[22]  G. Shen,et al.  All-Ti3C2TxMXene Based Flexible On-chip Microsupercapacitor Array , 2020, Chemical Research in Chinese Universities.

[23]  Zaiping Guo,et al.  An In‐Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn‐Ion Batteries , 2020, Advanced materials.

[24]  Zhihao Yuan,et al.  A high-power aqueous rechargeable Fe-I2 battery , 2020, Energy Storage Materials.

[25]  Guoxiu Wang,et al.  Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries , 2020, Chemical Research in Chinese Universities.

[26]  Yongming Sun,et al.  Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries , 2020 .

[27]  S. Passerini,et al.  Challenges and Strategies for High‐Energy Aqueous Electrolyte Rechargeable Batteries , 2020, Angewandte Chemie.

[28]  A. Yu,et al.  The Current State of Aqueous Zn-Based Rechargeable Batteries , 2020 .

[29]  Zhiqiang Niu,et al.  Engineering Active Sites of Polyaniline for AlCl2+ Storage in Aluminum Battery. , 2020, Angewandte Chemie.

[30]  Yitai Qian,et al.  Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode , 2020 .

[31]  B. Liu,et al.  Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries , 2020 .

[32]  Jiujun Zhang,et al.  Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn‐Based Batteries , 2020, Advanced Functional Materials.

[33]  Ya‐Xia Yin,et al.  Towards better Li metal anodes: Challenges and strategies , 2020 .

[34]  C. Zhi,et al.  Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries , 2020, Advanced materials.

[35]  Zhenpo Wang,et al.  Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. , 2020, Chemical reviews.

[36]  Zhiqiang Niu,et al.  Proton Insertion Chemistry of Zn/Organic Battery. , 2020, Angewandte Chemie.

[37]  Shubin Yang,et al.  Single Zinc Atoms Immobilized on MXene (Ti3C2Clx) Layers toward Dendrite-Free Lithium Metal Anodes. , 2020, ACS nano.

[38]  Jiangyan Wang,et al.  Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application , 2020 .

[39]  Bing Sun,et al.  MXene‐Based Dendrite‐Free Potassium Metal Batteries , 2019, Advanced materials.

[40]  Haodong Shi,et al.  Conducting and Lithiophilic MXene/Graphene Frameworks for High-Capacity, Dendrite-Free Lithium-Metal Anodes. , 2019, ACS nano.

[41]  Yingjin Wei,et al.  Lithiophilic Three-Dimensional Porous Ti3C2TX-rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. , 2019, ACS nano.

[42]  Shubin Yang,et al.  Perpendicular MXene Arrays with Periodic Interspaces toward Dendrite‐Free Lithium Metal Anodes with High‐Rate Capabilities , 2019, Advanced Functional Materials.

[43]  Yitai Qian,et al.  Flexible and Free-Standing Ti3C2Tx MXene@Zn Paper for Dendrite-Free Aqueous Zinc Metal Batteries and Non-Aqueous Lithium Metal Batteries. , 2019, ACS nano.

[44]  Hua Wang,et al.  A flexible aqueous Al ion rechargeable full battery , 2019, Chemical Engineering Journal.

[45]  Xiulei Ji,et al.  Rechargeable Iron–Sulfur Battery without Polysulfide Shuttling , 2019, Advanced Energy Materials.

[46]  Rui Zhang,et al.  A Coaxial‐Interweaved Hybrid Lithium Metal Anode for Long‐Lifespan Lithium Metal Batteries , 2019, Advanced Energy Materials.

[47]  Zifeng Wang,et al.  Advanced rechargeable zinc-based batteries: Recent progress and future perspectives , 2019, Nano Energy.

[48]  Zhijie Wang,et al.  Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes , 2019, Energy Storage Materials.

[49]  Jiangyan Wang,et al.  Hollow Multishelled Structures for Promising Applications: Understanding the Structure-Performance Correlation. , 2019, Accounts of chemical research.

[50]  Xiulei Ji,et al.  A Rechargeable Battery with an Iron Metal Anode , 2019, Advanced Functional Materials.

[51]  Lifang Jiao,et al.  Binder‐Free Electrodes for Advanced Sodium‐Ion Batteries , 2019, Advanced materials.

[52]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[53]  Jun Lu,et al.  Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery , 2019, Nature Communications.

[54]  Bin Luo,et al.  Recent Progress and Future Trends of Aluminum Batteries , 2018, Energy Technology.

[55]  X. Tao,et al.  Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes , 2018, Advanced Functional Materials.

[56]  Jiayan Luo,et al.  MXene Aerogel Scaffolds for High-Rate Lithium Metal Anodes. , 2018, Angewandte Chemie.

[57]  Wenbin Hu,et al.  Recent Advances in Flexible Zinc‐Based Rechargeable Batteries , 2018, Advanced Energy Materials.

[58]  Guoxiu Wang,et al.  2D Metal Carbides and Nitrides (MXenes) as High‐Performance Electrode Materials for Lithium‐Based Batteries , 2018, Advanced Energy Materials.

[59]  Zhiqiang Niu,et al.  An Aqueous Rechargeable Zinc‐Organic Battery with Hybrid Mechanism , 2018, Advanced Functional Materials.

[60]  Yongyao Xia,et al.  Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes , 2018, Small Methods.

[61]  C. Zhi,et al.  Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long‐Life Zinc Rechargeable Aqueous Batteries , 2018, Advanced Energy Materials.

[62]  E. Coy,et al.  Titania nanotubes modified by a pyrolyzed metal-organic framework with zero valent iron centers as a photoanode with enhanced photoelectrochemical, photocatalytical activity and high capacitance , 2018, Electrochimica Acta.

[63]  Yan Yao,et al.  An Aqueous Ca‐Ion Battery , 2017, Advanced science.

[64]  K. Ye,et al.  Assembly of Aqueous Rechargeable Magnesium Ions Battery Capacitor: The Nanowire Mg-OMS-2/Graphene as Cathode and Activated Carbon as Anode , 2017 .

[65]  Y. Tong,et al.  Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi‐Solid‐State Zn–MnO2 Battery , 2017, Advanced materials.

[66]  Chunsheng Wang,et al.  Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode , 2017 .

[67]  A. Manthiram,et al.  A Voltage-Enhanced, Low-Cost Aqueous Iron–Air Battery Enabled with a Mediator-Ion Solid Electrolyte , 2017 .

[68]  Zonghai Chen,et al.  The role of nanotechnology in the development of battery materials for electric vehicles. , 2016, Nature nanotechnology.

[69]  John Wang,et al.  A Flexible Quasi‐Solid‐State Nickel–Zinc Battery with High Energy and Power Densities Based on 3D Electrode Design , 2016, Advanced materials.

[70]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[71]  Qinghua Wu,et al.  Structural Transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A First-Principles Investigation. , 2016, ACS applied materials & interfaces.

[72]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .

[73]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[74]  Yuchan Zhang,et al.  Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries , 2022 .