Mechanistic Insights into Structural Stability of the Selectivity Filters in Typical Cation Channels

[1]  B. Roux,et al.  Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel , 2018, The Journal of general physiology.

[2]  A. McDermott,et al.  Transmembrane allosteric energetics characterization for strong coupling between proton and potassium ion binding in the KcsA channel , 2017, Proceedings of the National Academy of Sciences.

[3]  Albert C. Pan,et al.  Recovery from Slow Inactivation in K+ Channels is Controlled by Water Molecules , 2013, Nature.

[4]  Wanlin Guo,et al.  Ion solvation and structural stability in a sodium channel investigated by molecular dynamics calculations. , 2012, Biochimica et biophysica acta.

[5]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[6]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[7]  S. Chakrapani,et al.  A multipoint hydrogen-bond network underlying KcsA C-type inactivation. , 2011, Biophysical journal.

[8]  S. Bernèche,et al.  Absence of ion-binding affinity in the putatively inactivated low-[K+] structure of the KcsA potassium channel. , 2011, Structure.

[9]  Wanlin Guo,et al.  Hydration valve controlled non-selective conduction of Na(+) and K(+) in the NaK channel. , 2010, Biochimica et biophysica acta.

[10]  Eduardo Perozo,et al.  Structural mechanism of C-type inactivation in K+ channels , 2010, Nature.

[11]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[12]  S. Furini,et al.  Dynamics, energetics, and selectivity of the low-K+ KcsA channel structure. , 2009, Journal of molecular biology.

[13]  Wanlin Guo,et al.  Ion binding properties and structure stability of the NaK channel. , 2009, Biochimica et biophysica acta.

[14]  S. Furini,et al.  Permeation of water through the KcsA K+ channel , 2009, Proteins.

[15]  Anthony Lewis,et al.  Molecular driving forces determining potassium channel slow inactivation , 2007, Nature Structural &Molecular Biology.

[16]  Ursula Rothlisberger,et al.  The protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel: a first-principles QM/MM molecular dynamics study. , 2007, Biophysical journal.

[17]  Benoît Roux,et al.  Molecular determinants of gating at the potassium-channel selectivity filter , 2006, Nature Structural &Molecular Biology.

[18]  Sheng Ye,et al.  Atomic structure of a Na+- and K+-conducting channel , 2006, Nature.

[19]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[20]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[21]  Alexander D. MacKerell,et al.  Improved treatment of the protein backbone in empirical force fields. , 2004, Journal of the American Chemical Society.

[22]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[23]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[24]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[25]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[26]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[27]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[28]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[29]  R. MacKinnon,et al.  A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. , 1992, Science.

[30]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[31]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[32]  W. Almers,et al.  Survival of K+ permeability and gating currents in squid axons perfused with K+-free media , 1980, The Journal of general physiology.