A Nonlinear Stein-Based Estimator for Multichannel Image Denoising

The use of multicomponent images has become widespread with the improvement of multisensor systems having increased spatial and spectral resolutions. However, the observed images are often corrupted by an additive Gaussian noise. In this paper, we are interested in multichannel image denoising based on a multiscale representation of the images. A multivariate statistical approach is adopted to take into account both the spatial and the intercomponent correlations existing between the different wavelet subbands. More precisely, we propose a new parametric nonlinear estimator which generalizes many reported denoising methods. The derivation of the optimal parameters is achieved by applying Stein's principle in the multivariate case. Experiments performed on multispectral remote sensing images clearly indicate that our method outperforms conventional wavelet denoising techniques.

[1]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[2]  Oktay Alkin,et al.  Design of efficient M-band coders with linear-phase and perfect-reconstruction properties , 1995, IEEE Trans. Signal Process..

[3]  Caroline Chaux,et al.  Noise Covariance Properties in Dual-Tree Wavelet Decompositions , 2007, IEEE Transactions on Information Theory.

[4]  Amel Benazza-Benyahia,et al.  Wavelet-based multispectral image denoising with Bernouilli-Gaussian models , 2003 .

[5]  Stéphane Mallat,et al.  On denoising and best signal representation , 1999, IEEE Trans. Inf. Theory.

[6]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[7]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[8]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[9]  P. Hall,et al.  Block threshold rules for curve estimation using kernel and wavelet methods , 1998 .

[10]  Paul Scheunders,et al.  Wavelet thresholding of multivalued images , 2004, IEEE Transactions on Image Processing.

[11]  Eero P. Simoncelli,et al.  Optimal Denoising in Redundant Bases , 2007, 2007 IEEE International Conference on Image Processing.

[12]  Stephen C. Cain,et al.  Sampling, radiometry, and image reconstruction for polar and geostationary meteorological remote sensing systems , 2002, SPIE Optics + Photonics.

[13]  Caroline Chaux,et al.  Image analysis using a dual-tree M-band wavelet transform , 2006, IEEE Transactions on Image Processing.

[14]  Amel Benazza-Benyahia,et al.  A block-thresholding method for multispectral image denoising , 2005, SPIE Optics + Photonics.

[15]  Amel Benazza-Benyahia,et al.  Building robust wavelet estimators for multicomponent images using Stein's principle , 2005, IEEE Transactions on Image Processing.

[16]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[17]  Jaakko Astola,et al.  Nonlinear multivariate image filtering techniques , 1995, IEEE Trans. Image Process..

[18]  Aleksandra Pizurica,et al.  A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising , 2002, IEEE Trans. Image Process..

[19]  Laurent Duval,et al.  Étude du bruit dans une analyse M-bandes en arbre dual , 2005 .

[20]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .

[21]  Norman Weyrich,et al.  Wavelet shrinkage and generalized cross validation for image denoising , 1998, IEEE Trans. Image Process..

[22]  Peter N. Heller,et al.  Theory of regular M-band wavelet bases , 1993, IEEE Trans. Signal Process..

[23]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[24]  Thierry Blu,et al.  A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2007, IEEE Transactions on Image Processing.

[25]  Ram M. Narayanan,et al.  Noise estimation in remote sensing imagery using data masking , 2003 .

[26]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[27]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[28]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[29]  S. Mallat A wavelet tour of signal processing , 1998 .

[30]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[31]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[32]  Peter Hall,et al.  Numerical performance of block thresholded wavelet estimators , 1997, Stat. Comput..

[33]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[34]  P. Hall,et al.  ON THE MINIMAX OPTIMALITY OF BLOCK THRESHOLDED WAVELET ESTIMATORS , 1999 .

[35]  Kannan Ramchandran,et al.  Estimation error bounds for denoising by sparse approximation , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[36]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[37]  Paul Scheunders,et al.  Least-squares interband denoising of color and multispectral images , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[38]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[39]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[40]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[41]  P. Besbeas,et al.  Empirical Bayes approach to block wavelet function estimation , 2002 .

[42]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.

[43]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[44]  Yazhen Wang Function estimation via wavelet shrinkage for long-memory data , 1996 .

[45]  Amel Benazza-Benyahia,et al.  An interscale multivariate map estimation of multispectral images , 2004, 2004 12th European Signal Processing Conference.

[46]  Kannan Ramchandran,et al.  On multivariate estimation by thresholding , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[47]  Hervé Carfantan,et al.  Time-invariant orthonormal wavelet representations , 1996, IEEE Trans. Signal Process..

[48]  D. Leporini,et al.  A new wavelet estimator for image denoising , 1997 .

[49]  J. Pesquet,et al.  Wavelet thresholding for some classes of non–Gaussian noise , 2002 .

[50]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[51]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .