Normal projected entangled pair states generating the same state

Tensor networks are generated by a set of small rank tensors and define many-body quantum states in a succinct form. The corresponding map is not one-to-one: different sets of tensors may generate the very same state. A fundamental question in the study of tensor networks naturally arises: what is then the relation between those sets? The answer to this question in one dimensional setups has found several applications, like the characterization of local and global symmetries, the classification of phases of matter and unitary evolutions, or the determination of the fixed points of renormalization procedures. Here we answer this question for projected entangled-pair states (PEPS) in any dimension and lattice geometry, as long as the tensors generating the states are normal, which constitute an important and generic class.

[1]  E. Rico,et al.  Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.

[2]  J. Zittartz,et al.  Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets , 1993, cond-mat/9307028.

[3]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[4]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[5]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[6]  M. Sanz,et al.  Matrix product states: Symmetries and two-body Hamiltonians , 2009, 0901.2223.

[7]  D. Perez-Garcia,et al.  Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories , 2016, 1606.00608.

[8]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[9]  J. Cirac,et al.  A canonical form for Projected Entangled Pair States and applications , 2009, 0908.1674.

[10]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[11]  F. Verstraete,et al.  Valence-bond states for quantum computation , 2003, quant-ph/0311130.

[12]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[13]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[14]  13 0 v 1 1 9 N ov 2 00 3 Valence Bond Solids for Quantum Computation , 2018 .

[15]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[16]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[17]  David Pérez-García,et al.  Characterizing symmetries in a projected entangled pair state , 2010 .

[18]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[19]  Norbert Schuch,et al.  Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.

[20]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[21]  F. Verstraete,et al.  Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems , 2014, 1407.1025.

[22]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[23]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[24]  J I Cirac,et al.  String order and symmetries in quantum spin lattices. , 2008, Physical review letters.

[25]  Alexei Kitaev,et al.  Topological phases of fermions in one dimension , 2010, 1008.4138.

[27]  D. Gross,et al.  Measurement-based quantum computation beyond the one-way model , 2007, 0706.3401.

[28]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[29]  J. Ignacio Cirac,et al.  A generalization of the injectivity condition for Projected Entangled Pair States , 2017, 1706.07329.

[30]  J. Ignacio Cirac,et al.  Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.

[31]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[32]  D. Perez-Garcia,et al.  Computational complexity of PEPS zero testing , 2018, 1802.08214.

[33]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[34]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[35]  David Perez-Garcia,et al.  Matrix product unitaries: structure, symmetries, and topological invariants , 2017, 1703.09188.

[36]  David Perez-Garcia,et al.  Irreducible forms of matrix product states: Theory and applications , 2017, 1708.00029.

[37]  Sukhwinder Singh,et al.  Global symmetries in tensor network states: Symmetric tensors versus minimal bond dimension , 2013, 1307.1522.

[38]  M. B. Hastings,et al.  Solving gapped Hamiltonians locally , 2006 .

[39]  X. Wen,et al.  Classification of Gapped Symmetric Phases in 1D Spin Systems , 2011 .

[40]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[41]  Michael Marien,et al.  Matrix product operators for symmetry-protected topological phases , 2014, 1412.5604.

[42]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .