Normal projected entangled pair states generating the same state
暂无分享,去创建一个
J. Ignacio Cirac | Norbert Schuch | Jos'e Garre-Rubio | David P'erez-Garc'ia | J. Cirac | N. Schuch | José Garre-Rubio | D. P'erez-Garc'ia | Andras Molnar | A. Molnár
[1] E. Rico,et al. Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.
[2] J. Zittartz,et al. Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets , 1993, cond-mat/9307028.
[3] Frank Pollmann,et al. Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.
[4] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[5] R. Werner,et al. Reversible quantum cellular automata , 2004, quant-ph/0405174.
[6] M. Sanz,et al. Matrix product states: Symmetries and two-body Hamiltonians , 2009, 0901.2223.
[7] D. Perez-Garcia,et al. Matrix Product Density Operators: Renormalization Fixed Points and Boundary Theories , 2016, 1606.00608.
[8] P. Hayden,et al. Holographic duality from random tensor networks , 2016, 1601.01694.
[9] J. Cirac,et al. A canonical form for Projected Entangled Pair States and applications , 2009, 0908.1674.
[10] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[11] F. Verstraete,et al. Valence-bond states for quantum computation , 2003, quant-ph/0311130.
[12] Xiao-Gang Wen,et al. String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.
[13] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[14] 13 0 v 1 1 9 N ov 2 00 3 Valence Bond Solids for Quantum Computation , 2018 .
[15] Xiao-Gang Wen,et al. Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.
[16] David Pérez-García,et al. Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .
[17] David Pérez-García,et al. Characterizing symmetries in a projected entangled pair state , 2010 .
[18] D. Pérez-García,et al. PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.
[19] Norbert Schuch,et al. Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.
[20] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[21] F. Verstraete,et al. Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems , 2014, 1407.1025.
[22] E. Lieb,et al. Valence bond ground states in isotropic quantum antiferromagnets , 1988 .
[23] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[24] J I Cirac,et al. String order and symmetries in quantum spin lattices. , 2008, Physical review letters.
[25] Alexei Kitaev,et al. Topological phases of fermions in one dimension , 2010, 1008.4138.
[27] D. Gross,et al. Measurement-based quantum computation beyond the one-way model , 2007, 0706.3401.
[28] D. Gross,et al. Efficient quantum state tomography. , 2010, Nature communications.
[29] J. Ignacio Cirac,et al. A generalization of the injectivity condition for Projected Entangled Pair States , 2017, 1706.07329.
[30] J. Ignacio Cirac,et al. Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.
[31] Roman Orus,et al. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.
[32] D. Perez-Garcia,et al. Computational complexity of PEPS zero testing , 2018, 1802.08214.
[33] G. Vidal,et al. Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.
[34] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[35] David Perez-Garcia,et al. Matrix product unitaries: structure, symmetries, and topological invariants , 2017, 1703.09188.
[36] David Perez-Garcia,et al. Irreducible forms of matrix product states: Theory and applications , 2017, 1708.00029.
[37] Sukhwinder Singh,et al. Global symmetries in tensor network states: Symmetric tensors versus minimal bond dimension , 2013, 1307.1522.
[38] M. B. Hastings,et al. Solving gapped Hamiltonians locally , 2006 .
[39] X. Wen,et al. Classification of Gapped Symmetric Phases in 1D Spin Systems , 2011 .
[40] J. Preskill,et al. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.
[41] Michael Marien,et al. Matrix product operators for symmetry-protected topological phases , 2014, 1412.5604.
[42] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .