Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions

This paper presents coordination algorithms for networks of mobile autonomous agents. The objective of the proposed algorithms is to achieve rendezvous, that is, agreement over the location of the agents in the network. We provide analysis and design results for multiagent networks in arbitrary dimensions under weak requirements on the switching and failing communication topology. The novel correctness proof relies on proximity graphs and their properties and on a general LaSalle invariance principle for nondeterministic discrete-time dynamical systems

[1]  Eric Klavins Toward the Control of Self-Assembling Systems , 2003, Control Problems in Robotics.

[2]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[3]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[4]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[5]  Kevin M. Passino,et al.  Stable social foraging swarms in a noisy environment , 2004, IEEE Transactions on Automatic Control.

[6]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[7]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[8]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[10]  S. Yau Mathematics and its applications , 2002 .

[11]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[12]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[13]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[14]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[15]  Francesco Bullo,et al.  Esaim: Control, Optimisation and Calculus of Variations Spatially-distributed Coverage Optimization and Control with Limited-range Interactions , 2022 .

[16]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[17]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  W. Relative Neighborhood Graphs and Their Relatives , 2004 .

[19]  Xiang-Yang Li,et al.  Algorithmic, geometric and graphs issues in wireless networks , 2003, Wirel. Commun. Mob. Comput..

[20]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[21]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[22]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[23]  M. Mesbahi State-dependent graphs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[24]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. An Extended Summary , 2005 .

[25]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[26]  Karl Henrik Johansson,et al.  On multi-vehicle rendezvous under quantized communication , 2004 .