Theory of confocal fluorescence imaging in the programmable array microscope (PAM)

The programmable array microscope (PAM) uses a spatial light modulator (SLM) to generate an arbitrary pattern of conjugate illumination and detection elements. The SLM dissects the fluorescent light imaged by the objective into a focal conjugate image, Ic, formed by the ‘in‐focus’ light, and a nonconjugate image, Inc, formed by the ‘out‐of‐focus’ light. We discuss two different schemes for confocal imaging using the PAM. In the first, a grid of points is shifted to scan the complete image. The second, faster approach, uses a short tiled pseudorandom sequence of two‐dimensional patterns. In the first case, Ic is analogous to a confocal image and Inc to a conventional image minus Ic. In the second case Ic and Inc are the sum and the difference, respectively, of a conventional and a confocal image. The pseudorandom sequence approach requires post‐processing to retrieve the confocal part, but generates significantly higher signal levels for an equivalent integration time.

[1]  M. D. Egger,et al.  New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells , 1967, Science.

[2]  Thomas M. Jovin,et al.  Super-resolution MAP algorithms applied to fluorescence imaging , 1997, Photonics West - Biomedical Optics.

[3]  M. Kozubek,et al.  Confocal microscopy by aperture correlation. , 1996, Optics letters.

[4]  N. Sloane,et al.  Hadamard transform optics , 1979 .

[5]  Eithne M. McCabe,et al.  Direct‐view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole‐array configuration , 1997 .

[6]  P. Shaw,et al.  Comparison of Wide-Field/Deconvolution and Confocal Microscopy for 3D Imaging , 1995 .

[7]  T. Wilson,et al.  Optical sectioning in confocal fluorescent microscopes , 1989 .

[8]  G. Kino Intermediate Optics in Nipkow Disk Microscopes , 1990 .

[9]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[10]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[11]  S. J. Hewlett,et al.  Optical sectioning strength of the direct‐view microscope employing finite‐sized pin‐hole arrays , 1991 .

[12]  M. Liang,et al.  Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination. , 1997, Optics letters.

[13]  Kristofer S. J. Pister,et al.  MICRO-OPTO-ELECTRO-MECHANICAL DEVICES AND ON-CHIP OPTICAL PROCESSING , 1997 .

[14]  F S Fay,et al.  Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. , 1995, Science.

[15]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[16]  H T van der Voort,et al.  Three-dimensional confocal fluorescence microscopy. , 1989, Methods in cell biology.

[17]  Peter J. Verveer,et al.  Efficient superresolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy , 1997 .

[18]  G. J. Brakenhoff,et al.  3‐D image formation in high‐aperture fluorescence confocal microscopy: a numerical analysis , 1990 .

[19]  D. Agard Optical sectioning microscopy: cellular architecture in three dimensions. , 1984, Annual review of biophysics and bioengineering.