An investigation of interior-point and block pivoting algorithms for large-scale symmetric monotone linear complementarity problems

In this paper we describe a computational study of block principal pivoting (BP) and interior-point predictor-corrector (PC) algorithms for the solution of large-scale linear complementarity problems (LCP) with symmetric positive definite matrices. This study shows that these algorithms are in general quite appropriate for this type of LCPs. The BP algorithm does not seem to be sensitive to bad scaling and degeneracy of the unique solution of the LCP, while these aspects have some effect on the performance of the PC algorithm. On the other hand, the BP method has not performed well in two LCPs with ill-conditioned matrices for which the PC algorithm has behaved quite well.A hybrid algorithm combining these two techniques is also introduced and seems to be the most robust procedure for the solution of large-scale LCPs with symmetric positive definite matrices.

[1]  R. Fletcher,et al.  Minimization of a Quadratic Function of Many Variables Subject only to Lower and Upper Bounds , 1974 .

[2]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[3]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[4]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[5]  Joaquim Júdice,et al.  A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems , 1994, Comput. Oper. Res..

[6]  Y. Ye,et al.  Solution of $P_0 $-Matrix Linear Complementarity Problems Using a potential Reduction Algorithm , 1993, SIAM J. Matrix Anal. Appl..

[7]  L. Grippo,et al.  A class of nonmonotone stabilization methods in unconstrained optimization , 1991 .

[8]  Iain S. Duff,et al.  Direct methods for sparse matrices27100 , 1986 .

[9]  Faruk Güder,et al.  Parallel and Serial Successive Overrelaxation for Multicommodity Spatial Price Equilibrium Problems , 1992, Transp. Sci..

[10]  R. Chandrasekaran,et al.  A Special Case of the Complementary Pivot Problem , 1969 .

[11]  Jong-Shi Pang,et al.  On a class of least-element complementarity problems , 1979, Math. Program..

[12]  D. Bertsekas Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[13]  J. J. Moré,et al.  Algorithms for bound constrained quadratic programming problems , 1989 .

[14]  Jong-Shi Pang,et al.  On the solution of some (parametric) linear complementarity problems with applications to portfolio selection, structural engineering and actuarial graduation , 1979, Math. Program..

[15]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[16]  Jon W. Tolle,et al.  A class of methods for solving large, convex quadratic programs subject to box constraints , 1991, Math. Program..

[17]  J. Pang,et al.  Iterative methods for large convex quadratic programs: a survey , 1987 .

[18]  T. Terlaky,et al.  The linear complimentarity problem, sufficient matrices, and the criss-cross method , 1993 .

[19]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[20]  S. Lucidi,et al.  A Class of penalty functions for optimization problema with bound constraints , 1992 .

[21]  J. M. Martínez,et al.  A new trust region algorithm for bound constrained minimization , 1994 .

[22]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[23]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[24]  Iain S. Duff,et al.  MA27 -- A set of Fortran subroutines for solving sparse symmetric sets of linear equations , 1982 .

[25]  J. H. Wilkinson,et al.  AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .

[26]  Y. Ye,et al.  A Class of Linear Complementarity Problems Solvable in Polynomial Time , 1991 .

[27]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[28]  Joaquim Júdice,et al.  An Investigation of Interior-Point Algorithms for the Linear Transportation Problem , 1996, SIAM J. Sci. Comput..

[29]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[30]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[31]  Shinji Mizuno,et al.  Infeasible-Interior-Point Primal-Dual Potential-Reduction Algorithms for Linear Programming , 1995, SIAM J. Optim..

[32]  Stephen J. Wright A path-following infeasible-interior-point algorithm for linear complementarity problems , 1993 .

[33]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[34]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[35]  J. Ortega Introduction to Parallel and Vector Solution of Linear Systems , 1988, Frontiers of Computer Science.

[36]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[37]  Laurie A. Hulbert,et al.  A direct active set algorithm for large sparse quadratic programs with simple bounds , 1989, Math. Program..

[38]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[39]  Laurie A. Hulbert,et al.  A Globally and Superlinearly Convergent Algorithm for Convex Quadratic Programs with Simple Bbounds , 1993, SIAM J. Optim..

[40]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[41]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[42]  M. Kostreva Direct algorithms for complementarity problems. , 1976 .

[43]  O. Mangasarian Equivalence of the Complementarity Problem to a System of Nonlinear Equations , 1976 .