Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR

Context. LOFAR offers the unique capability of observing pulsars across the 10−240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. Aims. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. Methods. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: high band (120–167 MHz, 100 profiles) and low band (15–62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and 1400 MHz) to study the profile evolution. The profiles were aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. Results. We find that the profile evolution with decreasing radio frequency does not follow a specific trend; depending on the geometry of the pulsar, new components can enter into or be hidden from view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories.

[1]  A. Noutsos,et al.  A LOFAR census of millisecond pulsars , 2015, 1508.02948.

[2]  J. Anderson,et al.  LOFAR discovery of a quiet emission mode in PSR B0823+26 , 2015, 1505.03064.

[3]  H. Falcke,et al.  Pulsar polarisation below 200 MHz: Average profiles and propagation effects , 2015, 1501.03312.

[4]  J. Dyks,et al.  The origin of the frequency-dependent behaviour of pulsar radio profiles , 2014, 1411.0866.

[5]  F. Schinzel,et al.  PULSAR OBSERVATIONS USING THE FIRST STATION OF THE LONG WAVELENGTH ARRAY AND THE LWA PULSAR DATA ARCHIVE , 2014, 1410.7422.

[6]  H. Falcke,et al.  LOFAR observations of PSR B0943+10: profile evolution and discovery of a systematically changing profile delay in Bright mode , 2014, 1408.5272.

[7]  A. Noutsos,et al.  The LOFAR pilot surveys for pulsars and fast radio transients , 2014, 1408.0411.

[8]  D. Stinebring,et al.  MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS , 2014, 1407.0171.

[9]  J. L. Chen,et al.  FREQUENCY DEPENDENCE OF PULSE WIDTH FOR 150 RADIO NORMAL PULSARS , 2014, 1406.5841.

[10]  Hong Wang,et al.  A FAN BEAM MODEL FOR RADIO PULSARS. I. OBSERVATIONAL EVIDENCE , 2014, 1405.6825.

[11]  Robert P. Johnson,et al.  THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS , 2013 .

[12]  I. Cognard,et al.  Detection of decametre-wavelength pulsed radio emission of 40 known pulsars , 2013 .

[13]  S. Burke-Spolaor,et al.  Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.

[14]  J. Dyks,et al.  Asymmetry of bifurcated features in radio pulsar profiles , 2012, 1204.0452.

[15]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[16]  J. Cordes,et al.  Profile shape stability and phase jitter analyses of millisecond pulsars , 2011, 1110.4759.

[17]  G. Hobbs,et al.  High signal‐to‐noise ratio observations and the ultimate limits of precision pulsar timing , 2011, 1108.0812.

[18]  A. Philippov,et al.  On the mean profiles of radio pulsars – I. Theory of propagation effects , 2011, 1107.3775.

[19]  Poland,et al.  On the pulse-width statistics in radio pulsars - II. Importance of the core profile components , 2011, 1107.0212.

[20]  K. Hirotani PULSAR OUTER-GAP ELECTRODYNAMICS: HARDENING OF SPECTRAL SHAPE IN THE TRAILING PEAK IN THE GAMMA-RAY LIGHT CURVE , 2011, 1104.5357.

[21]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[22]  A. Lyne,et al.  A study of 315 glitches in the rotation of 102 pulsars , 2011, 1102.1743.

[23]  A. Lyne,et al.  Switched Magnetospheric Regulation of Pulsar Spin-Down , 2010, Science.

[24]  A. N. Timokhin,et al.  Time-dependent pair cascades in magnetospheres of neutron stars - I. Dynamics of the polar cap cascade with no particle supply from the neutron star surface , 2010, 1006.2384.

[25]  V. Malofeev,et al.  Average pulse profiles of radio pulsars at 102 and 111 MHz , 2010 .

[26]  R. Manchester,et al.  29 glitches detected at Urumqi Observatory , 2010, 1001.1471.

[27]  P. Demorest,et al.  The nature of pulsar radio emission , 2009, 0908.1359.

[28]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[29]  B. Losovskiĭ,et al.  Deviation of the arrival-time delay of pulses for the Crab pulsar from a quadratic frequency region , 2008 .

[30]  T. Hankins,et al.  ARECIBO MULTI-FREQUENCY TIME-ALIGNED PULSAR AVERAGE-PROFILE AND POLARIZATION DATABASE , 2008, 0802.1202.

[31]  D. Lorimer Binary and Millisecond Pulsars , 1998, Living reviews in relativity.

[32]  A. Karastergiou,et al.  An empirical model for the beams of radio pulsars , 2007, 0707.2547.

[33]  B. Stappers,et al.  The subpulse modulation properties of pulsars at 92 cm and the frequency dependence of subpulse modulation , 2007, 0704.3572.

[34]  N. Bhat,et al.  Dispersion measure variations and their effect on precision pulsar timing , 2007, astro-ph/0702366.

[35]  Netherlands,et al.  30 glitches in slow pulsars , 2006, astro-ph/0607260.

[36]  B. Stappers,et al.  Frequency dependence of orthogonal polarisation modes in pulsars , 2005, astro-ph/0512107.

[37]  B. Stappers,et al.  The subpulse modulation properties of pulsars at 21 cm , 2005, astro-ph/0507282.

[38]  U. Arizona,et al.  Arecibo timing and single‐pulse observations of 17 pulsars , 2005, astro-ph/0508320.

[39]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[40]  D. Lorimer,et al.  Handbook of Pulsar Astronomy , 2004 .

[41]  A. R. Institute,et al.  On the pulse-width statistics in radio pulsars – I. Importance of the interpulse emission , 2004, astro-ph/0412159.

[42]  A. Lyne,et al.  Long-term timing observations of 374 pulsars , 2004 .

[43]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[44]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[45]  Tomasz Soltysinski,et al.  Arecibo Timing and Single-Pulse Observations of Eighteen Pulsars , 2003, astro-ph/0309452.

[46]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[47]  D. Mitra,et al.  Toward an Empirical Theory of Pulsar Emission. VII. On the Spectral Behavior of Conal Beam Radii and Emission Heights , 2002, astro-ph/0205356.

[48]  J. Cordes,et al.  The Velocity Distribution of Isolated Radio Pulsars , 2001, astro-ph/0106159.

[49]  Qiao Guo-jun,et al.  Relative spectral behavior of leading and trailing components of conal-double pulsars , 2001 .

[50]  A. Somer New Pulsars from Arecibo Drift Scan Search , 1999, astro-ph/9911222.

[51]  A. G. Lyne,et al.  Multifrequency polarimetry of 300 radio pulsars , 1998 .

[52]  V. A. Izvekova,et al.  Catalogue of time aligned profiles of 56 pulsars at frequencies between 102 and 10500 MHz , 1998 .

[53]  J. Taylor,et al.  The Green Bank Northern Sky Survey for Fast Pulsars , 1997 .

[54]  M. McKinnon Birefringence as a Mechanism for the Broadening and Depolarization of Pulsar Average Profiles , 1997 .

[55]  A. Krawczyk,et al.  Pulsar beams - conal not patchy , 1996 .

[56]  A. Wolszczan Planets Around Pulsars , 1996 .

[57]  J. Rankin,et al.  On the Approach to Stability of Pulsar Average Profiles , 1995 .

[58]  D. Nice,et al.  Timing parameters of 29 pulsars , 1995 .

[59]  D. Lorimer,et al.  Multifrequency flux density measurements of 280 pulsars , 1995 .

[60]  V. A. Izvekova,et al.  Frequency dependence of characteristics of pulsars PSR 0031 – 07, 0320 + 39, 1133 + 16 and 2016 + 28 , 1993 .

[61]  J. Rankin Toward an Empirical Theory of Pulsar Emission. VI. The Geometry of the Conal Emission Region , 1993 .

[62]  S. Thorsett Frequency Dependence of Pulsar Integrated Profiles , 1991 .

[63]  V. A. Izvekova,et al.  Microstructure-determined Pulsar Dispersion Measures and the Problem of Profile Alignment , 1991 .

[64]  V. Radhakrishnan,et al.  Toward an empirical theory of pulsar emission. V. On the circular polarization in pulsar radiation , 1990 .

[65]  J. Rankin Toward an empirical theory of pulsar emission. IV. Geometry of the core emission region , 1990 .

[66]  R. Romani,et al.  Evidence for geodetic spin precession in the binary pulsar 1913+16 , 1989 .

[67]  V. S. Beskin,et al.  Theory of the radio emission of pulsars , 1988 .

[68]  F. Michel A pulsar emission model - Observational tests , 1987 .

[69]  A. Lyne,et al.  Faraday rotation measurements on 163 pulsars , 1987 .

[70]  B. Rickett,et al.  Frequency dependence of pulsar profiles , 1986 .

[71]  J. Arons,et al.  Wave propagation in pulsar magnetospheres - Refraction of rays in the open flux zone , 1986 .

[72]  J. Rankin Toward an empirical theory of pulsar emission. III: Mode changing, drifting subpulses, and pulse nulling , 1986 .

[73]  J. Rankin Toward an empirical theory of pulsar emission. II: On the spectral behavior of component width , 1983 .

[74]  J. Rankin Toward an empirical theory of pulsar emission. I: Morphological taxonomy , 1983 .

[75]  J. Cordes,et al.  Observational limits on the location of pulsar emission regions. , 1978 .

[76]  J. Taylor,et al.  Observations of pulsar radio emission. III. Stability of integrated profiles. , 1975 .

[77]  Ruderman,et al.  Theory of pulsars: polar gaps, sparks, and coherent microwave radiation , 1975 .

[78]  M. Komesaroff,et al.  Possible Mechanism for the Pulsar Radio Emission , 1970, Nature.