Static output feedback control of polytopic systems using polynomial Lyapunov functions

This paper is concerned with the problem of robust static output feedback control design for continuous-time uncertain linear systems. The uncertain time-invariant parameters belong to a polytopic domain and affect all system matrices. A two-stage linear matrix inequality procedure is proposed. At the first step, a stabilizing state feedback scheduled gain with polynomial or rational dependence on the parameters is determined. This state feedback gain is used as an input parameter for the second stage, which synthesizes the robust static output feedback gain. In both stages, a homogeneous polynomially parameter-dependent Lyapunov function of arbitrary degree is used to assess closed-loop stability. Numerical examples demonstrate that with the increase of the degree of the polynomial matrices more accurate results are obtained, outperforming the existing methods in the literature.

[1]  Alexandre Trofino,et al.  Sufficient LMI conditions for the design of static and reduced order controllers , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[2]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[3]  C. M. Agulhari,et al.  Robust ℋ∞ static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains , 2010, Proceedings of the 2010 American Control Conference.

[4]  Ricardo C. L. F. Oliveira,et al.  Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions , 2008, Syst. Control. Lett..

[5]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[6]  Uri Shaked,et al.  Robust Reduced-order Output-feedback H∞ Control , 2009 .

[7]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[8]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[9]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.

[10]  Pierre Apkarian,et al.  Mixed H2/Hinfinity Control via Nonsmooth Optimization , 2008, SIAM J. Control. Optim..

[11]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[14]  G. Chesi Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems , 2009 .

[15]  Olivier Bachelier,et al.  Static output feedback design for uncertain linear discrete time systems , 2004, IMA J. Math. Control. Inf..

[16]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[17]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[18]  Michael L. Overton,et al.  Multiobjective robust control with HIFOO 2.0 , 2009, 0905.3229.

[19]  Ricardo C. L. F. Oliveira,et al.  Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.

[20]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[21]  Dimitri Peaucelle,et al.  Robust Static Output Feedback Stabilization for Polytopic Uncertain Systems: Improving the Guaranteed Performance Bound , 2003 .

[22]  Pierre Apkarian,et al.  Mixed H2/H∞ control via nonsmooth optimization , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[23]  Liu Hsu,et al.  LMI characterization of structural and robust stability , 1998 .

[24]  Ricardo C. L. F. Oliveira,et al.  A convex optimization procedure to compute ℋ︁2 and ℋ︁∞ norms for uncertain linear systems in polytopic domains , 2008 .