Bayesian Inference with Spiking Neurons

Humans and other animals behave as if we perform fast Bayesian inference underlying decisions and movement control given uncertain sense data. Here we show that a biophysically realistic model of the subthreshold membrane potential of a single neuron can exactly compute the numerator in Bayes rule for inferring the Poisson parameter of a sensory spike train. A simple network of spiking neurons can construct and represent the Bayesian posterior density of a parameter of an external cause that affects the Poisson parameter, accurately and in real time.

[1]  S. Denéve,et al.  Neural processing as causal inference , 2011, Current Opinion in Neurobiology.

[2]  Rajesh P. N. Rao Neural Models of Bayesian Belief Propagation , 2006 .

[3]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[4]  Andrew S. French,et al.  The systems analysis approach to mechanosensory coding , 2009, Biological Cybernetics.

[5]  M. Häusser,et al.  Neurobiology , 2001, Current Opinion in Neurobiology.

[6]  Michael S Landy,et al.  Motor control is decision-making , 2012, Current Opinion in Neurobiology.

[7]  R. Kass,et al.  Bayesian decoding of neural spike trains , 2010 .

[8]  Barry J. Richmond,et al.  Stochasticity, spikes and decoding: sufficiency and utility of order statistics , 2009, Biological Cybernetics.

[9]  Daniel M Merfeld,et al.  A distributed, dynamic, parallel computational model: the role of noise in velocity storage. , 2012, Journal of neurophysiology.

[10]  David W. Franklin,et al.  Computational Mechanisms of Sensorimotor Control , 2011, Neuron.

[11]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[12]  Michael G. Paulin,et al.  Bayesian head state prediction: Computing the dynamic prior with spiking neurons , 2011, 2011 Seventh International Conference on Natural Computation.

[13]  G. DeAngelis,et al.  Multisensory integration: psychophysics, neurophysiology, and computation , 2009, Current Opinion in Neurobiology.

[14]  Matthias Durr,et al.  Methods In Neuronal Modeling From Ions To Networks , 2016 .

[15]  Peter Dayan,et al.  Fast Population Coding , 2007, Neural Computation.

[16]  E N Brown,et al.  A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells , 1998, The Journal of Neuroscience.

[17]  Max Berniker,et al.  Bayesian approaches to sensory integration for motor control. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[18]  Don H. Johnson,et al.  Information Theory and Neural Information Processing , 2010, IEEE Transactions on Information Theory.

[19]  Wolfgang Maass,et al.  Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[20]  Matthew C Wiener,et al.  Decoding Spike Trains Instant by Instant Using Order Statistics and the Mixture-of-Poissons Model , 2003, The Journal of Neuroscience.

[21]  Yonina C. Eldar,et al.  Bayesian Filtering in Spiking Neural Networks: Noise, Adaptation, and Multisensory Integration , 2009, Neural Computation.

[22]  Konrad Paul Kording,et al.  Decision Theory: What "Should" the Nervous System Do? , 2007, Science.

[23]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[24]  Michael G. Paulin,et al.  Dynamics and the single spike , 2004, IEEE Transactions on Neural Networks.

[25]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[26]  Brian J. Fischer,et al.  Owl's behavior and neural representation predicted by Bayesian inference , 2011, Nature Neuroscience.

[27]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[28]  David B. Grayden,et al.  Study of neuronal gain in a conductance-based leaky integrate-and-fire neuron model with balanced excitatory and inhibitory synaptic input , 2003, Biological Cybernetics.

[29]  Sophie Denève,et al.  Spike-Based Population Coding and Working Memory , 2011, PLoS Comput. Biol..

[30]  Mark E. Nelson,et al.  A Mechanism for Neuronal Gain Control by Descending Pathways , 1994, Neural Computation.

[31]  Dora E Angelaki,et al.  Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. , 2008, Journal of neurophysiology.

[32]  Brent Doiron,et al.  Deterministic Multiplicative Gain Control with Active Dendrites , 2005, The Journal of Neuroscience.

[33]  Alex K. Susemihl,et al.  Dynamic state estimation based on Poisson spike trains—towards a theory of optimal encoding , 2012, 1209.5559.

[34]  M G Paulin,et al.  Evolution of the cerebellum as a neuronal machine for Bayesian state estimation , 2005, Journal of neural engineering.

[35]  Timothy D. Hanks,et al.  Probabilistic Population Codes for Bayesian Decision Making , 2008, Neuron.

[36]  Konrad P. Körding,et al.  Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task , 2009, PLoS Comput. Biol..

[37]  Sophie Deneve,et al.  Making Decisions with Unknown Sensory Reliability , 2012, Front. Neurosci..

[38]  Si Wu,et al.  Neural Implementation of Bayesian Inference in Population Codes , 2001, NIPS.

[39]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[40]  Konrad P. Kording,et al.  Decision Theory: What "Should" the Nervous System Do? , 2007 .

[41]  Travis Monk,et al.  The Evolutionary Origin of Nervous Systems and Implications for Neural Computation , 2013 .

[42]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[43]  Joseph Bastian,et al.  Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe , 1986, Journal of Comparative Physiology A.

[44]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[45]  Wei Ji Ma,et al.  Spiking networks for Bayesian inference and choice , 2008, Current Opinion in Neurobiology.

[46]  Yosef Yarom,et al.  The functional architecture of the shark's dorsal-octavolateral nucleus: an in vitro study , 2007, Journal of Experimental Biology.

[47]  Jean Laurens,et al.  Bayesian processing of vestibular information , 2007, Biological Cybernetics.

[48]  Nicholas J. Priebe,et al.  Mechanisms of Neuronal Computation in Mammalian Visual Cortex , 2012, Neuron.