Density of Methanolic Alkali Halide Salt Solutions by Experiment and Molecular Simulation

The density of methanolic alkali halide salt solutions is studied experimentally at 2 98.15 K, 308.15 K and 318.15 K at 1 bar for solutions containing all soluble combination s of alkali cations (Li +, Na+, K+, Rb+, Cs+) with halide anions (F −, Cl−, Br−, I−) at concentrations up to 0.05 mol/mol or 90 % of the solubility limit. The density of the electrolyte solutions is also determined by molecular simulation in the same temperature and composition rang e. The used force fields of the ions were adjusted in previous work to properties of aqueous solutions and the solvent methanol to pure component properties. The force fields are of the LennardJones (LJ) plus point charge type in case of the ions and of the LJ plus pa rtial charges type in case of the solvent. For the present molecular simulations, no further adjus tment of the force fields is carried out. The mixed interactions between the ions and methanol are predicted by the Lorentz-Berthelot combining rules. The predictions of the reduced de nsity by molecular simulation are found to be in very good agreement with the experimental data. F urthermore, the radial distribution function of methanol around the ions, the solvation numb er and the residence time of methanol molecules in the first solvation shell, the self-diffus ion coefficient ∗To whom correspondence should be addressed

[1]  J. Gmehling,et al.  Experimental measurement and modeling of solubility of LiBr and LiNO3 in methanol, ethanol, 1-propanol, 2-propanol and 1-butanol , 2011 .

[2]  Grinnell. Jones,et al.  The Viscosity of Solutions of Salts in Methanol , 1935 .

[3]  Paul E. Smith,et al.  A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. , 2011, Journal of chemical theory and computation.

[4]  J. Rasaiah,et al.  Solvent Structure, Dynamics, and Ion Mobility in Aqueous Solutions at 25 °C , 1998 .

[5]  Dominik Horinek,et al.  Rational design of ion force fields based on thermodynamic solvation properties. , 2009, The Journal of chemical physics.

[6]  H. Hasse,et al.  Temperature Dependence of the Density of Aqueous Alkali Halide Salt Solutions by Experiment and Molecular Simulation , 2014 .

[7]  E. Hawlicka,et al.  MD Simulation Studies of Selective Solvation in Methanol−Water Mixtures: An Effect of the Charge Density of a Solute , 2002 .

[8]  Ming-Jing Hwang,et al.  Derivation of Class II Force Fields. 4. van der Waals Parameters of Alkali Metal Cations and Halide Anions , 1997 .

[9]  E. Macedo,et al.  Representation of salt solubility in mixed solvents: a comparison of thermodynamic models , 1996 .

[10]  L. Dang Development of nonadditive intermolecular potentials using molecular dynamics: Solvation of Li+ and F− ions in polarizable water , 1992 .

[11]  J. Barthel,et al.  Non-aqueous electrolyte solutions , 1983, Naturwissenschaften.

[12]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[13]  E. Hawlicka,et al.  Dynamic properties of the NaCl–methanol–water systems—MD simulation studies , 2000 .

[14]  B. C. Garrett,et al.  Photoelectron spectra of the hydrated iodine anion from molecular dynamics simulations , 1993 .

[15]  R. Zana,et al.  Partial molal volumes of ions in organic solvents from ultrasonic vibration potential and density measurements. I. Methanol , 1974 .

[16]  Hag-Sung Kim Solvent effect on K+ to Na+ ion mutation: a Monte Carlo simulation study , 2001 .

[17]  J. Gmehling,et al.  Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol , 2003 .

[18]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[19]  Mauro Ferrario,et al.  Molecular-dynamics simulation of liquid methanol , 1987 .

[20]  Hans Hasse,et al.  Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. , 2011, The Journal of chemical physics.

[21]  Samantha Weerasinghe,et al.  Kirkwood–Buff derived force field for mixtures of acetone and water , 2003 .

[22]  L. Dang Fluoride—fluoride association in water from molecular dynamics simulations , 1992 .

[23]  H. T. Briscoe,et al.  Studies of Relative Viscosity of Non-aqueous Solutions. , 1942 .

[24]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[25]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[26]  and A. Domínguez,et al.  Dynamic Viscosities of KI or NH4I in Methanol and NH4I in Ethanol at Several Temperatures and 0.1 MPa , 2005 .

[27]  L. Dang,et al.  Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study , 1995 .

[28]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid alcohols , 1986 .

[29]  E. Hawlicka,et al.  Aggregation of ions in methanol–water solutions of sodium halides , 2003 .

[30]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[31]  H. Hasse,et al.  Molecular dispersion energy parameters for alkali and halide ions in aqueous solution. , 2014, The Journal of chemical physics.

[32]  J. Wawer,et al.  Apparent molar volumes, expansibilities, and isentropic compressibilities of selected electrolytes in methanol , 2008 .

[33]  Maria M. Reif,et al.  Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. , 2011, The Journal of chemical physics.

[34]  C. M. Criss,et al.  Isentropic compressibilities of univalent electrolytes in methanol at 25°C , 1984 .

[35]  R. Cole,et al.  Dielectric properties of electrolyte solutions. 2. Alkali halides in methanol , 1982 .

[36]  David E. Smith,et al.  Computer simulations of NaCl association in polarizable water , 1994 .

[37]  Solid-solid and solid-fluid equilibria of the most popular models of methanol obtained by computer simulation. , 2011, The journal of physical chemistry. B.

[38]  Ivo Nezbeda,et al.  Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations. , 2013, The Journal of chemical physics.

[39]  M. Pagliai,et al.  Structure and dynamics of Br- ion in liquid methanol. , 2006, The journal of physical chemistry. B.

[40]  D. H. Dagade,et al.  Studies of Thermodynamic Properties of Binary and Ternary Methanolic Solutions Containing KBr and 18-Crown-6 at 298.15 K , 2006 .

[41]  Parveen Kumar,et al.  Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation. , 2013, The journal of physical chemistry. B.

[42]  Lichang Wang,et al.  Molecular Dynamics - Theoretical Developments and Applications in Nanotechnology and Energy , 2012 .

[43]  Y. Marcus On the Molar Volumes and Viscosities of Electrolytes , 2006 .

[44]  A. Dyshin,et al.  A volumetric investigation of solvophobic effects in halide-n-alkanol-n-alkane ternary systems , 2006 .

[45]  N. Pavel,et al.  An extended x‐ray absorption fine structure study by employing molecular dynamics simulations: Bromide ion in methanolic solution , 1996 .

[46]  W. Turner,et al.  CCIV.—The solubilities of alkali haloids in methyl, ethyl, propyl, and isoamyl alcohols , 2022 .

[47]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[48]  D. Wheeler,et al.  Molecular Dynamics Simulations of Multicomponent Diffusion. 2. Nonequilibrium Method , 2004 .

[49]  H. Emons,et al.  Über das Verhalten der Alkalihalogenide in Methanol‐Wasser‐Mischungen , 2010 .

[50]  Roger Impey,et al.  Hydration and mobility of ions in solution , 1983 .

[51]  E. S. Amis,et al.  The Equivalent Conductance of Electrolytes in Mixed Solvent , 1956 .

[52]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[53]  P. Smirnov Comparative review of structural parameters of the nearest surrounding of monoatomic cations in water and methanol media , 2013, Russian Journal of General Chemistry.

[54]  H. Hasse,et al.  Prediction of transport properties by molecular simulation: methanol and ethanol and their mixture. , 2008, The journal of physical chemistry. B.

[55]  Hans Hasse,et al.  Hydrogen bonding of methanol in supercritical CO2: comparison between 1H NMR spectroscopic data and molecular simulation results. , 2007, The journal of physical chemistry. B.

[56]  J. Butler,et al.  219. The electrostriction produced by salts in some aliphatic alcohols , 1933 .

[57]  P. Ulbig,et al.  Solubilities of Sodium Chloride in Organic and Aqueous−Organic Solvent Mixtures , 1998 .

[58]  Gösta. Åkerlöf,et al.  The Solubility of Some Strong, Highly Soluble Electrolytes in Methyl Alcohol and Hydrogen Peroxide—Water Mixtures at 25° , 1935 .

[59]  V. Knecht,et al.  Kirkwood-Buff derived force field for alkali chlorides in simple point charge water. , 2010, The Journal of chemical physics.

[60]  J. Barthel,et al.  Non-aqueous electrolyte solutions in chemistry and modern technology , 1983 .

[61]  E. Guàrdia,et al.  Molecular dynamics study of Na+ and Cl− in methanol , 1996 .

[62]  C. M. Criss,et al.  Apparent molal volumes and heat capacities of some 1:1 electrolytes in anhydrous methanol at 25°C , 1978 .

[63]  William L Jorgensen,et al.  Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. , 2006, Journal of chemical theory and computation.

[64]  J. Gmehling,et al.  Solubilities of NaCl, KCl, LiCl, and LiBr in Methanol, Ethanol, Acetone, and Mixed Solvents and Correlation Using the LIQUAC Model , 2010 .

[65]  G. Pálinkás,et al.  X-ray diffraction study of lithium halides in methanol , 2002 .

[66]  M. Pagliai,et al.  The solvation dynamics of Na+ and K+ ions in liquid methanol , 2007 .

[67]  Snehasis Chowdhuri,et al.  Pressure effects on the dynamics of ions and solvent molecules in liquid methanol under ambient and cold conditions: Importance of solvent's H-bonding network , 2013 .

[68]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties, new version release , 2014, Comput. Phys. Commun..

[69]  R. Impey,et al.  Ionic solvation in nonaqueous solvents: the structure of lithium ion and chloride in methanol, ammonia, and methylamine , 1987 .

[70]  A. Chandra,et al.  Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions. , 2006, The Journal of chemical physics.

[71]  Hans Hasse,et al.  A set of molecular models for alkali and halide ions in aqueous solution. , 2012, The Journal of chemical physics.

[72]  I. Kolthoff,et al.  Critical study involving water, methanol, acetonitrile, N,N-dimethylformamide, and dimethyl sulfoxide of medium ion activity coefficients, .gamma., on the basis of the .gamma.AsPh4+ = .gamma.BPh4- assumption , 1972 .

[73]  B. Smit,et al.  Molecular simulations of the vapour-liquid coexistence curve of methanol , 1995 .

[74]  J. B. Sydnor,et al.  Solubilities of Anhydrous Ionic Substances in Absolute Methanol. , 1963 .