Propagation of statistical uncertainties of Skyrme mass models to simulations of r -process nucleosynthesis

Uncertainties in nuclear models have a major impact on simulations that aim at understanding the origin of heavy elements in the universe through the rapid neutron capture process ($r$ process) of nucleosynthesis. Within the framework of the nuclear density functional theory, we use results of Bayesian statistical analysis to propagate uncertainties in the parameters of energy density functionals to the predicted $r$-process abundance pattern, by way not only of the nuclear masses but also through the influence of the masses on $\beta$-decay and neutron capture rates. We additionally make the first identifications of specific parameters of Skyrme-like energy density functionals which are correlated with particular aspects of the $r$-process abundance pattern. While previous studies have explored the reduction in the abundance pattern uncertainties due to anticipated new measurements of neutron-rich nuclei, here we point out that an even larger reduction will occur when these new measurements are used to reduce the uncertainty of model predictions of masses, which are then propagated through to the abundance pattern. We make a quantitative prediction for how large this reduction will be.

[1]  T. Beers,et al.  Actinide Production in the Neutron-rich Ejecta of a Neutron Star Merger , 2018, The Astrophysical Journal.

[2]  M. V. Stoitsov,et al.  One-quasiparticle States in the Nuclear Energy Density Functional Theory , 2009, 0910.2164.

[3]  F. G. Kondev,et al.  The NUBASE2016 evaluation of nuclear properties , 2017 .

[4]  R. Schaeffer,et al.  A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities , 1998 .

[5]  D. Siegel,et al.  Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis. , 2017, Physical review letters.

[6]  K. Kratz,et al.  Nuclear properties for astrophysical and radioactive-ion-beam applications (II) , 1997, Atomic Data and Nuclear Data Tables.

[7]  J. Pearson,et al.  Nuclear mass formula via an approximation to the hartree-fock method , 1995 .

[8]  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[9]  D. Lunney Extending and refining the nuclear mass surface with ISOLTRAP , 2017 .

[10]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient , 2013 .

[11]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[12]  W. Marsden I and J , 2012 .

[13]  M. Mumpower,et al.  Formation of the rare-earth peak: Gaining insight into late-time r -process dynamics , 2011, 1109.3613.

[14]  N. Schunck,et al.  Fission dynamics of Pu240 from saddle to scission and beyond , 2018, Physical Review C.

[15]  Stefan M. Wild,et al.  Uncertainty quantification and propagation in nuclear density functional theory , 2015, The European Physical Journal A.

[16]  W. Nazarewicz,et al.  Impact of Nuclear Mass Uncertainties on the r Process. , 2015, Physical review letters.

[17]  Masaru Shibata,et al.  PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS , 2014, 1402.7317.

[18]  Stefan M. Wild,et al.  A Bayesian approach for parameter estimation and prediction using a computationally intensive model , 2014, Journal of Physics G: Nuclear and Particle Physics.

[19]  S. Goriely,et al.  Nuclear mass formula with Bogolyubov-enhanced shell-quenching: application to r-process , 1996 .

[20]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[21]  Stefan M. Wild,et al.  Nuclear energy density optimization: Large deformations , 2011, 1111.4344.

[22]  A. Aprahamian,et al.  Uncorrelated Nuclear Mass Uncertainties and r-process Abundance Predictions , 2016 .

[23]  A. G. W. Cameron,et al.  NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS , 1957 .

[24]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[25]  J. Rissanen,et al.  Isomeric states close to doubly magic 132 Sn studied with the double Penning trap JYFLTRAP , 2012, 1206.6236.

[26]  W. M. Howard,et al.  r-process nucleosynthesis in the high-entropy supernova bubble , 1992 .

[27]  L. Roberts,et al.  Medium modification of the charged-current neutrino opacity and its implications , 2012, 1205.4066.

[28]  T. Uesaka,et al.  Storage ring mass spectrometry for nuclear structure and astrophysics research , 2016, 1811.12003.

[29]  H. Janka,et al.  Neutrino signal of electron-capture supernovae from core collapse to cooling , 2010 .

[30]  A. Perego,et al.  NEUTRINO-DRIVEN WINDS IN THE AFTERMATH OF A NEUTRON STAR MERGER: NUCLEOSYNTHESIS AND ELECTROMAGNETIC TRANSIENTS , 2015, 1506.05048.

[31]  J. Bartel,et al.  Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force , 1982 .

[32]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[33]  Stefan M. Wild,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program , 2012, Comput. Phys. Commun..

[34]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[35]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter , 2010, 1009.3840.

[36]  M. Kortelainen,et al.  The limits of the nuclear landscape , 2012, Nature.

[37]  Stefan M. Wild,et al.  Uncertainty quantification for nuclear density functional theory and information content of new measurements. , 2015, Physical review letters.

[38]  Xing Xu,et al.  The AME2016 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[39]  J. Äystö,et al.  Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP: Reduced Neutron Pairing and Implications for r-Process Calculations. , 2018, Physical review letters.

[40]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[41]  W. Myers,et al.  Nuclear properties according to the Thomas-Fermi model☆ , 1996 .

[42]  C. Zhang,et al.  Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): A new version of the program , 2017, Comput. Phys. Commun..

[43]  T. Kawano,et al.  Neutron- γ competition for β -delayed neutron emission , 2016, 1608.01956.

[44]  Paul-Gerhard Reinhard,et al.  Variations on a theme by Skyrme: A systematic study of adjustments of model parameters , 2009 .

[45]  Min Liu,et al.  Further improvements on a global nuclear mass model , 2011, 1104.0066.

[46]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[47]  J. Clark,et al.  Precision Mass Measurements of Neutron-Rich Neodymium and Samarium Isotopes and Their Role in Understanding Rare-Earth Peak Formation. , 2018, Physical review letters.

[48]  β-delayed Fission in r-process Nucleosynthesis , 2018, The Astrophysical Journal.

[49]  Stefan M. Wild,et al.  Nuclear Energy Density Optimization , 2010, 1005.5145.

[50]  A. Aprahamian,et al.  The impact of individual nuclear properties on $r$-process nucleosynthesis , 2015, 1508.07352.

[51]  Jacques Treiner,et al.  Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line , 1984 .

[52]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[53]  T. Kajino,et al.  ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL , 2015, 1509.08934.

[54]  A. Segovia On nucleosynthesis-relevant conditions in neutrino-driven supernova outflows , 2007 .

[55]  H. Janka,et al.  On the nuclear robustness of the r process in neutron-star mergers , 2014, 1409.6135.

[56]  Nana Ma,et al.  An improved nuclear mass formula with a unified prescription for the shell and pairing corrections , 2014 .

[57]  J. Ullmann,et al.  Estimation of M1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations , 2017, 1706.07504.

[58]  D. Lascar,et al.  Precision mass measurements of $^{125–127}$Cd isotopes and isomers approaching the N = 82 closed shell , 2017, 1705.04449.

[59]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[60]  K. Takahashi,et al.  The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries , 2007, 0705.4512.

[61]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[62]  L. Robledo,et al.  Fission properties of superheavy nuclei for r -process calculations , 2017, 1704.00554.

[63]  H. Sagawa,et al.  Nuclear ground-state masses and deformations: FRDM(2012) , 2015, 1508.06294.

[64]  A. Steiner,et al.  Reverse engineering nuclear properties from rare earth abundances in the $r$ process , 2016, 1609.09858.

[65]  Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks , 2005, astro-ph/0509365.

[66]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[67]  R. Capote,et al.  Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies , 2016, 1604.08635.

[68]  Takahiro Tachibana,et al.  Nuclidic Mass Formula on a Spherical Basis with an Improved Even-Odd Term , 2005 .

[69]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[70]  Ani Aprahamian,et al.  First operation and mass separation with the CARIBU MR-TOF , 2016 .

[71]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[72]  Witold Nazarewicz,et al.  Bayesian approach to model-based extrapolation of nuclear observables , 2018, Physical Review C.