Identification of solid oxygen‐containing Na‐electrolytes: An assessment based on crystallographic and economic parameters

We have scanned the inorganic crystal structure database using Voronoi-Dirichlet methodology for inorganic, crystalline, solid Na electrolytes and applied a total of nine different crystallographic and economic parameters in order to evaluate the potential of each material. Especially for stationary electrochemical energy storage — used to counteract the capricious nature of renewable energy sources and momentary variations of energy consumption — Na-based chemistries have a considerable market share. They rely on solid Na electrolytes separating the Na and S electrode compartments. We used data generated from the currently widest-spread Na electrolytes to lay a foundation for the crystallographic data mining and Voronoi-Dirichlet partitioning of the database. The structural data is the basis for the calculation of the above-mentioned parameters. We introduced an evaluation and scoring scheme to systematise the results and — depending on the weighting scheme — point towards the most promising materials. Aluminosilicates and transition metal oxides seem especially interesting but, depending on the weighting, any of the more than 400 candidates could be the next-generation solid Na electrolyte.

[1]  Vladislav A. Blatov,et al.  Migration maps of Li+ cations in oxygen-containing compounds , 2008 .

[2]  Y. Shin,et al.  Preparation and structural properties of layer-type oxides NaxNix/2Ti1−x/2O2 (0.60≤x≤1.0) , 2000 .

[3]  D. Bish,et al.  A PH₂O-dependent structural phase transition in the zeolite natrolite , 2008 .

[4]  G. Farrington,et al.  Fast Ionic Transport in Solids , 1979, Science.

[5]  V. Blatov Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications , 2004 .

[6]  T. Hibma,et al.  The sodium conductivity paths in the superionic conductors Na5RESi4O12 , 1978 .

[7]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[8]  Martin Faulstich,et al.  Raw Material Criticality in the Context of Classical Risk Assessment , 2015 .

[9]  دکتر فرساد ایمانی,et al.  11 , 1900, You Can Cross the Massacre on Foot.

[10]  Stefan Adams,et al.  High power lithium ion battery materials by computational design , 2011 .

[11]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[12]  H. Böhm,et al.  Materials for High‐Temperature Batteries , 1998 .

[13]  李幼升,et al.  Ph , 1989 .

[14]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[15]  J. P. Boilot,et al.  Relation Structure-Fast Ion Conduction in the NASICON Solid Solution , 1988 .

[16]  T. Thompson Miner , 2014 .

[17]  T. Nestler,et al.  Separators - Technology review: Ceramic based separators for secondary batteries , 2014 .

[18]  J. Bates,et al.  Ionic conductivity of sodium beta″-alumina , 1981 .

[19]  C. Rüscher,et al.  Anomalous thermal expansion behaviour of Na8[AlSiO4]6(NO3)2-sodalite: P4̅3n to Pm3̅n phase transition by untilting and contraction of TO4 units , 2003 .

[20]  J. Boilot,et al.  X-ray-scattering study of the fast-ion conductor β''-alumina , 1980 .

[21]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[22]  M. Avdeev,et al.  Alkali Metal Cation and Proton Conductors: Relationships between Composition, Crystal Structure, and Properties , 2009 .

[23]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[24]  J. Mizuki,et al.  Roles of transition metals interchanging with lithium in electrode materials. , 2015, Physical chemistry chemical physics : PCCP.

[25]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[26]  V. Blatov,et al.  Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition. , 2006, Acta crystallographica. Section B, Structural science.

[27]  K. Evans,et al.  Off-axis elastic properties and the effect of extraframework species on structural flexibility of the NAT-type zeolites: simulations of structure and elastic properties , 2007 .

[28]  Anil V. Virkar,et al.  Resistivity‐Microstructure Relations in Lithia‐Stabilized Polycrystalline β”‐Alumina , 1978 .

[29]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  R. O. Fuentes,et al.  Stability and Thermal Expansion of Na+-Conducting Ceramics , 2003 .

[32]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[33]  R. Hoppe,et al.  Das erste Oxomanganat(III) mit Inselstruktur: Zur Kenntnis von Na5[MnO4] , 1984 .

[34]  J. Isasi,et al.  Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure , 2000 .

[35]  N. Sharma,et al.  Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction , 2014 .

[36]  V. Kahlenberg,et al.  Crystal structure of hexagonal trinephelineA new synthetic NaAlSiO 4 modification , 1998 .

[37]  Wolfram Münchgesang,et al.  On the Way to New Possible Na-Ion Conductors: The Voronoi-Dirichlet Approach, Data Mining and Symmetry Considerations in Ternary Na Oxides. , 2015, Chemistry.

[38]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[39]  R. Kirchheim The mixed alkali effect as a consequence of network density and site energy distribution , 2000 .

[40]  S. Yoshikado,et al.  Ion conduction in single crystals of the hollandite-type one-dimensional superionic conductor NaxCrxTi8−xO16 (x=1.7) , 2000 .