Querying approximate shortest paths in anisotropic regions

We present a data structure for answering approximate shortest path queries ina planar subdivision from a fixed source. Let ρ ≥ 1 be a real number.Distances in each face of this subdivision are measured by a possiblyasymmetric convex distance function whose unit disk is contained in aconcentric unit Euclidean disk, and contains a concentric Euclidean disk withradius 1/ρ. Different convex distance functions may be used for differentfaces, and obstacles are allowed. Let ε be any number strictly between 0and 1. Our data structure returns a (1+ε)approximation of the shortest path cost from the fixed source to a querydestination in O(logρn/ε) time. Afterwards, a(1+ε)-approximate shortest path can be reported in time linear in itscomplexity. The data structure uses O(ρ<sup>2</sup> n<sup>4</sup>/ε<sup>2</sup> log ρn/ε) space and can be built in O((ρ<sup>2</sup> n<sup>4</sup>)/(ε<sup>2</sup>)(log ρn/ε)<sup>2</sup>) time. Our time and space bounds do not depend onany geometric parameter of the subdivision such as the minimum angle.

[1]  Yajun Wang,et al.  Approximate shortest paths in anisotropic regions , 2007, SODA '07.

[2]  Derick Wood,et al.  Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.

[3]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[4]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[5]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[6]  Jörg-Rüdiger Sack,et al.  Determining approximate shortest paths on weighted polyhedral surfaces , 2005, JACM.

[7]  Sariel Har-Peled,et al.  Constructing approximate shortest path maps in three dimensions , 1998, SCG '98.

[8]  Sunil Arya,et al.  Approximating a voronoi cell , 2003 .

[9]  Micha Sharir,et al.  An Optimal-Time Algorithm for Shortest Paths on a Convex Polytope in Three Dimensions , 2006, SCG '06.

[10]  Chan-Su Shin,et al.  Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets , 2006, Comput. Geom..

[11]  Zheng Sun,et al.  On finding approximate optimal paths in weighted regions , 2006, J. Algorithms.

[12]  Jörg-Rüdiger Sack,et al.  Approximate Shortest Path Queries on Weighted Polyhedral Surfaces , 2006, MFCS.

[13]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[14]  Sariel Har-Peled,et al.  Approximate Shortest Paths and Geodesic Diameter on a Convex Polytope in Three Dimensions , 1999, Discret. Comput. Geom..

[15]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[16]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[17]  Joseph S. B. Mitchell,et al.  Two-point Euclidean shortest path queries in the plane , 1999, SODA '99.

[18]  Jörg-Rüdiger Sack,et al.  Approximating Shortest Paths on Weighted Polyhedral Surfaces , 2001, Algorithmica.

[19]  Zheng Sun,et al.  Movement Planning in the Presence of Flows , 2001, WADS.

[20]  Vom Fachbereich Informatik,et al.  Bisectors and Voronoi Diagrams for Convex Distance Functions , 2000 .