A Cartesian Ensemble of Feature Subspace Classifiers for Music Categorization

We present a cartesian ensemble classification system that is based on the principle of late fusion and feature subspaces. These feature subspaces describe different aspects of the same data set. The framework is built on the Weka machine learning toolkit and able to combine arbitrary feature sets and learning schemes. In our scenario, we use it for the ensemble classification of multiple feature sets from the audio and symbolic domains. We present an extensive set of experiments in the context of music genre classification, based on numerous Music IR benchmark datasets, and evaluate a set of combination/voting rules. The results show that the approach is superior to the best choice of a single algorithm on a single feature set. Moreover, it also releases the user from making this choice explicitly.

[1]  P.P. de Leon,et al.  Pattern Recognition Approach for Music Style Identification Using Shallow Statistical Descriptors , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  Andreas Rauber,et al.  On the suitability of state-of-the-art music information retrieval methods for analyzing, categorizing and accessing non-Western and ethnic music collections , 2010, Signal Process..

[3]  Alessandro L. Koerich,et al.  The Latin Music Database , 2008, ISMIR.

[4]  Luisa Micó,et al.  Comparison of Classifier Fusion Methods for Classification in Pattern Recognition Tasks , 2006, SSPR/SPR.

[5]  Andreas Rauber,et al.  Evaluation of Feature Extractors and Psycho-Acoustic Transformations for Music Genre Classification , 2005, ISMIR.

[6]  George Tzanetakis,et al.  Music analysis and retrieval systems for audio signals , 2004, J. Assoc. Inf. Sci. Technol..

[7]  Anil Kokaram,et al.  An Evaluation of Alternative Feature Selection Strategies and Ensemble Techniques for Classifying Music , 2003 .

[8]  William P. Birmingham,et al.  Algorithms for Chordal Analysis , 2002, Computer Music Journal.

[9]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[10]  José Manuel Iñesta Quereda,et al.  Genre classification using chords and stochastic language models , 2009, Connect. Sci..

[11]  Pedro Ponce de Len,et al.  Pattern Recognition Approach for Music Style Identification Using Shallow Statistical Descriptors , 2007, IEEE Trans. Syst. Man Cybern. Part C.

[12]  François Pachet,et al.  Improving Timbre Similarity : How high’s the sky ? , 2004 .

[13]  José Manuel Iñesta Quereda,et al.  A Pattern Recognition Approach for Melody Track Selection in MIDI Files , 2006, ISMIR.

[14]  Andreas Rauber,et al.  Improving Genre Classification by Combination of Audio and Symbolic Descriptors Using a Transcription Systems , 2007, ISMIR.

[15]  José Manuel Iñesta Quereda,et al.  Multiple fundamental frequency estimation using Gaussian smoothness , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Douglas Eck,et al.  Aggregate features and ADABOOST for music classification , 2006, Machine Learning.

[18]  Andreas Rauber,et al.  Audio music classification using a combination of spectral, timbral, rhythmic, temporal and symbolic features , 2008 .

[19]  George Tzanetakis,et al.  Manipulation, analysis and retrieval systems for audio signals , 2002 .

[20]  Marc Leman,et al.  Digitisation of the ethnomusicological sound archive of the Royal Museum for Central Africa (Belgium) , 2005 .

[21]  Xavier Serra,et al.  ISMIR 2004 Audio Description Contest , 2006 .

[22]  Ichiro Fujinaga,et al.  ACE: A Framework for Optimizing Music Classification , 2005, ISMIR.