Variable-Length Compression Allowing Errors

This paper studies the fundamental limits of the minimum average length of lossless and lossy variable-length compression, allowing a nonzero error probability ε, for lossless compression. We give nonasymptotic bounds on the minimum average length in terms of Erokhin's rate-distortion function and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit, which is quite accurate for all but small blocklengths: (1 - ε)kH(S) - ((kV(S)/2π))1/2 exp[-((Q-1 (ε))2/2)], where Q-1 (·) is the functional inverse of the standard Gaussian complementary cumulative distribution function, and V(S) is the source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate by a factor of 1 - ε, but this asymptotic limit is approached from below, i.e, larger source dispersions and shorter blocklengths are beneficial. Variable-length lossy compression under an excess distortion constraint is shown to exhibit similar properties.

[1]  Sergio Verdú,et al.  Variable-length compression allowing errors (extended) , 2014, ArXiv.

[2]  Alexandr A. Borovkov,et al.  Limit Theorems of Probability Theory. , 2011 .

[3]  Akisato Kimura,et al.  Weak variable-length Slepian-Wolf coding with linked encoders for mixed sources , 2004, IEEE Transactions on Information Theory.

[4]  Hiroki Koga,et al.  Source Coding Using Families of Universal Hash Functions , 2007, IEEE Transactions on Information Theory.

[5]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[6]  Te Sun Han,et al.  Weak variable-length source coding , 2000, IEEE Trans. Inf. Theory.

[7]  John C. Kieffer Strong converses in source coding relative to a fidelity criterion , 1991, IEEE Trans. Inf. Theory.

[8]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[9]  A. J. Viterbi,et al.  A Lower Bound on the Expected Length of One-to-one Codes , 1994 .

[10]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[11]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[12]  Thomas M. Cover,et al.  Some equivalences between Shannon entropy and Kolmogorov complexity , 1978, IEEE Trans. Inf. Theory.

[13]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[14]  En-Hui Yang,et al.  The redundancy of source coding with a fidelity criterion - Part II: Coding at a fixed rate level with unknown statistics , 2001, IEEE Trans. Inf. Theory.

[15]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[16]  Hirosuke Yamamoto,et al.  Asymptotic properties on codeword lengths of an optimal FV code for general sources , 2005, IEEE Transactions on Information Theory.

[17]  Amir Dembo,et al.  Critical behavior in lossy source coding , 2000, IEEE Trans. Inf. Theory.

[18]  Sergio Verdú,et al.  Fixed-Length Lossy Compression in the Finite Blocklength Regime , 2011, IEEE Transactions on Information Theory.

[19]  Ioannis Kontoyiannis,et al.  Pointwise redundancy in lossy data compression and universal lossy data compression , 2000, IEEE Trans. Inf. Theory.

[20]  Wojciech Szpankowski,et al.  A One-to-One Code and Its Anti-Redundancy , 2008, IEEE Transactions on Information Theory.

[21]  Sergio Verdú,et al.  Optimal Lossless Data Compression: Non-Asymptotics and Asymptotics , 2014, IEEE Transactions on Information Theory.

[22]  Aaron D. Wyner,et al.  An Upper Bound on the Entropy Series , 1972, Inf. Control..

[23]  Noga Alon,et al.  A lower bound on the expected length of one-to-one codes , 1994, IEEE Trans. Inf. Theory.

[24]  Frederick Jelinek,et al.  Probabilistic Information Theory: Discrete and Memoryless Models , 1968 .

[25]  Wojciech Szpankowski,et al.  Minimum Expected Length of Fixed-to-Variable Lossless Compression Without Prefix Constraints , 2011, IEEE Transactions on Information Theory.

[26]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[27]  Oliver Kosut,et al.  Asymptotics and Non-Asymptotics for Universal Fixed-to-Variable Source Coding , 2014, IEEE Transactions on Information Theory.

[28]  E. Posner,et al.  Epsilon entropy of stochastic processes. , 1967 .

[29]  V. Erokhin $\varepsilon $-Entropy of a Discrete Random Variable , 1958 .

[30]  Zhen Zhang,et al.  On the Redundancy of Lossy Source Coding with Abstract Alphabets , 1999, IEEE Trans. Inf. Theory.

[31]  Gou Hosoya,et al.  国際会議参加報告:2014 IEEE International Symposium on Information Theory , 2014 .

[32]  Yuval Kochman,et al.  The Dispersion of Lossy Source Coding , 2011, 2011 Data Compression Conference.

[33]  E. Posner,et al.  Epsilon Entropy and Data Compression , 1971 .