Cryo-CMOS for Analog/Mixed-Signal Circuits and Systems

CMOS circuits operating at cryogenic temperature (cryo-CMOS) are required in several low-temperature applications. A compelling example is the electronic interface for quantum processors, which must reside very close to the cryogenic quantum devices it serves, and hence operate at the same temperature, so as to enable practical large-scale quantum computers. Such cryo-CMOS circuits must achieve extremely high performance while dissipating minimum power to be compatible with existing cryogenic refrigerators. These requirements asks for cryo-CMOS electronics on par with or even exceeding their room-temperature counterparts. This paper overviews the challenges and the opportunities in designing cryo-CMOS circuits, with a focus on analog and mixed-signal circuits, such as voltage references and data converters.

[1]  Georges Gielen,et al.  A cryogenic analog to digital converter operating from 300 K down to 4.4 K. , 2010, The Review of scientific instruments.

[2]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[3]  J. Burr,et al.  Cryogenic ultra low power CMOS , 1995, 1995 IEEE Symposium on Low Power Electronics. Digest of Technical Papers.

[4]  Robert B. Staszewski,et al.  A 1 V Bandgap Reference in 7-nm FinFET with a Programmable Temperature Coefficient and an Inaccuracy of ±0.2% from −45°C to 125°C , 2018, ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC).

[5]  Kushal Das,et al.  Cryo-CMOS Band-gap Reference Circuits for Quantum Computing , 2019, 1910.01217.

[6]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[7]  A.H.M. van Roermund,et al.  A 300°C Dynamic-Feedback Instrumentation Amplifier , 1998 .

[8]  Timur V. Filippov,et al.  Digital Output Data Links From Superconductor Integrated Circuits , 2019, IEEE Transactions on Applied Superconductivity.

[9]  Arnout Beckers,et al.  Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures , 2018, Solid-State Electronics.

[10]  Robert Bogdan Staszewski,et al.  A 1-V Bandgap Reference in 7-nm FinFET With a Programmable Temperature Coefficient and Inaccuracy of ±0.2% From −45°C to 125°C , 2019, IEEE Journal of Solid-State Circuits.

[11]  Lin Song,et al.  Cryo-CMOS electronic control for scalable quantum computing , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[12]  G. Ghibaudo,et al.  Self-Heating Effect in FDSOI Transistors Down to Cryogenic Operation at 4.2 K , 2019, IEEE Transactions on Electron Devices.

[13]  Hongliang Zhao,et al.  A low-power cryogenic analog to digital converter in standard CMOS technology , 2013 .

[14]  Chris Van Hoof,et al.  An 8-Bit Flash Analog-to-Digital Converter in Standard CMOS Technology Functional From 4.2 K to 300 K , 2009, IEEE Journal of Solid-State Circuits.

[15]  O. Rozeau,et al.  28nm FDSOI technology platform for high-speed low-voltage digital applications , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[16]  Arnout Beckers,et al.  Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K , 2018, IEEE Journal of the Electron Devices Society.

[17]  Michael P. Frank,et al.  The National Quantum Initiative Will Also Benefit Classical Computers [Rebooting Computing] , 2018, Computer.

[18]  M. Vinet,et al.  Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization , 2018, IEEE Transactions on Electron Devices.

[19]  Eddy Simoen,et al.  Anomalous latch-up behaviour of CMOS at liquid helium temperatures , 1990 .

[20]  Christian Grewing,et al.  Systems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[21]  M. Veldhorst,et al.  Voltage References for the Ultra-Wide Temperature Range from 4.2K to 300K in 40-nm CMOS , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[22]  赵毅强,et al.  A cryogenic SAR ADC for infrared readout circuits , 2011 .

[23]  Ming Yang,et al.  A cryogenic 10-bit successive approximation register analog-to-digital converter design with modified device model , 2013 .

[24]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[25]  J. Cressler,et al.  Sub-1-K Operation of SiGe Transistors and Circuits , 2009, IEEE Electron Device Letters.

[26]  David Blaauw,et al.  Ultralow-voltage, minimum-energy CMOS , 2006, IBM J. Res. Dev..

[27]  Xiang Fu,et al.  A heterogeneous quantum computer architecture , 2016, Conf. Computing Frontiers.

[28]  Chris Van Hoof,et al.  A Cryogenic ADC operating Down to 4.2K , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[29]  Felix A. Miranda,et al.  Measurements of complex permittivity of microwave substrates in the 20 to 300 K temperature range from 26.5 to 40.0 GHz , 1990 .

[30]  Yusuf Leblebici,et al.  A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[31]  Torsten Lehmann,et al.  A cryogenic DAC operating down to 4.2 K , 2016 .

[32]  Edoardo Charbon,et al.  Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2019, ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC).

[33]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[34]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[35]  Edoardo Charbon,et al.  The electronic interface for quantum processors , 2018, Microprocess. Microsystems.

[36]  Edoardo Charbon,et al.  Interfacing Qubits via Cryo-CMOS Front Ends , 2018, 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA).

[37]  A. Gerritsen,et al.  The possibility for using an amplifier at low temperatures , 1951 .

[38]  Bo Yu,et al.  Cold electronics for "Giant" Liquid Argon Time Projection Chambers , 2011 .

[39]  Edoardo Charbon,et al.  Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[40]  Edoardo Charbon,et al.  The Cryogenic Temperature Behavior of Bipolar, MOS, and DTMOS Transistors in Standard CMOS , 2018, IEEE Journal of the Electron Devices Society.

[41]  Edoardo Charbon,et al.  Deep-Cryogenic Voltage References in 40-nm CMOS , 2018, IEEE Solid-State Circuits Letters.

[42]  Arnout Beckers,et al.  Cryogenic MOS Transistor Model , 2018, IEEE Transactions on Electron Devices.

[43]  R. M. Swanson,et al.  Ion-implanted complementary MOS transistors in low-voltage circuits , 1972 .

[44]  Torsten Lehmann,et al.  Cryogenic Support Circuits and Systems for Silicon Quantum Computers , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[45]  A. Abidi,et al.  Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures , 1994 .

[46]  Iman Esmaeil Zadeh,et al.  Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution , 2016, 1611.02726.

[47]  Edoardo Charbon,et al.  Characterization and Model Validation of Mismatch in Nanometer CMOS at Cryogenic Temperatures , 2018, 2018 48th European Solid-State Device Research Conference (ESSDERC).

[48]  Manjul Bhushan,et al.  Performance characterization of PD-SOI ring oscillators at cryogenic temperatures , 2010, 2010 IEEE International SOI Conference (SOI).

[49]  N. Haberkorn,et al.  Superconductivity in nanocrystalline tungsten thin films growth by sputtering in a nitrogen-argon mixture , 2019, Thin Solid Films.

[50]  Augustyn Waczynski,et al.  Mechanisms and Temperature Dependence of Single Event Latchup Observed in a CMOS Readout Integrated Circuit From 16–300 K , 2010, IEEE Transactions on Nuclear Science.

[51]  Mustafa Berke Yelten,et al.  A High Speed 180 NM CMOS Cryogenic SAR ADC , 2018, 2018 18th Mediterranean Microwave Symposium (MMS).

[52]  Harald Homulle,et al.  Cryogenic electronics for the read-out of quantum processors , 2019 .

[53]  Philippe Flatresse,et al.  UTBB FD-SOI: A process/design symbiosis for breakthrough energy-efficiency , 2013, 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[54]  Torsten Lehmann,et al.  A Self-Calibrated Cryogenic Current Cell for 4.2 K Current Steering D/A Converters , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[55]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[56]  Khairul Affendi Rosli,et al.  A Comparative Study on SOI MOSFETs for Low Power Applications , 2013 .

[57]  Georges Gielen,et al.  A third-order complementary metal-oxide-semiconductor sigma-delta modulator operating between 4.2 K and 300 K. , 2012, The Review of scientific instruments.

[58]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[59]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[60]  P. Asbeck,et al.  Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs , 2019, IEEE Electron Device Letters.