Parameter Evaluation of a Simple Mean-Field Model of Social Interaction

The aim of this work is to implement a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. A class of simple mean field discrete models is introduced and discussed both from the theoretical and phenomenological point of view. We propose a parameter evaluation procedure and test it by fitting our model against three families of data coming from different cases: the estimated interaction parameters are found to have similar positive values establishing a quantitative confirmation of the peer imitation behavior found in social psychology. Moreover all the values of the interaction parameters belong to the phase transition regime suggesting its possible role in the study of social systems.

[1]  M. Gladwell,et al.  The Tipping Point , 2011 .

[2]  R. Ellis,et al.  Large deviations and statistical mechanics , 1985 .

[3]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[4]  D. Watts,et al.  Influentials, Networks, and Public Opinion Formation , 2007 .

[5]  Ken Binmore,et al.  Game theory and the social contract , 1984 .

[6]  H. Föllmer Random economies with many interacting agents , 1974 .

[7]  安川 文明,et al.  予防歯科プログラムの選考に関する Discrete Choice Analysis , 2002 .

[8]  Nicola Bellomo,et al.  From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells ✩ , 2008 .

[9]  P. Contucci,et al.  Tackling climate change through energy efficiency: mathematical models for evidence-based public policy recommendations , 2008, 0804.3319.

[10]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[11]  Rama Cont,et al.  Social Distance, Heterogeneity and Social Interactions , 2003 .

[12]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[13]  Jean-Philippe Bouchaud,et al.  Theory of collective opinion shifts: from smooth trends to abrupt swings , 2005, cond-mat/0504079.

[14]  John M. Rose,et al.  Applied Choice Analysis: List of tables , 2005 .

[15]  R. Ellis,et al.  Entropy, large deviations, and statistical mechanics , 1985 .

[16]  W. Pope,et al.  Sociology's “One Law” , 1981 .

[17]  Adriaan R. Soetevent,et al.  A discrete-choice model with social interactions: with an application to high school teen behavior , 2007 .

[18]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[19]  A. Rivlin,et al.  Economic Choices , 2001 .

[20]  P. Contucci,et al.  Bipartite Mean Field Spin Systems. Existence and Solution , 2007, 0710.0800.

[21]  John M. Rose,et al.  Applied Choice Analysis: List of tables , 2005 .

[22]  J. Berkson A Statistically Precise and Relatively Simple Method of Estimating the Bio-Assay with Quantal Response, Based on the Logistic Function , 1953 .

[23]  S. Galam,et al.  Towards a theory of collective phenomena: Consensus and attitude changes in groups , 1991 .

[24]  E. Olivieri,et al.  Large deviations and metastability: Large deviations and statistical mechanics , 2005 .

[25]  J. Bouchaud,et al.  Of songs and men: a model for multiple choice with herding , 2006, physics/0606224.

[26]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[27]  A. Barra The Mean Field Ising Model trough Interpolating Techniques , 2007, 0712.1344.

[28]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[29]  John M. Rose,et al.  Applied Choice Analysis: A Primer , 2005 .

[30]  T. Schelling,et al.  Micromotives and Macrobehaviour. , 1980 .