Threshold autoregression analysis for finite-range time series of counts with an application on measles data

ABSTRACT This article studies the threshold autoregression analysis for the self-exciting threshold binomial autoregressive processes. Parameters' point estimation and interval estimation problems are considered via the empirical likelihood method. A new algorithm to estimate the threshold value of the threshold model is also given. Simulation study is conducted for the evaluation of the developed approach. An application on measles data is provided to show the applicability of the method.

[1]  Peter Thyregod,et al.  Integer Valued Autoregressive Models for Tipping Bucket Rainfall Measurements , 1999 .

[2]  Dehui Wang,et al.  Empirical likelihood inference for INAR(1) model with explanatory variables , 2016 .

[3]  Cong Li,et al.  Effective Control Charts for Monitoring the NGINAR(1) Process , 2016, Qual. Reliab. Eng. Int..

[4]  Anna Clara Monti Empirical likelihood confidence regions in time series models , 1997 .

[5]  Han Li,et al.  Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes , 2017, Comput. Stat..

[6]  Fukang Zhu,et al.  The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes , 2011 .

[7]  C. Weiß,et al.  Monitoring correlated processes with binomial marginals , 2009 .

[8]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[9]  Mohamed Alosh,et al.  FIRST‐ORDER INTEGER‐VALUED AUTOREGRESSIVE (INAR(1)) PROCESS , 1987 .

[10]  Magda Monteiro,et al.  Integer-Valued Self-Exciting Threshold Autoregressive Processes , 2012 .

[11]  C. Weiß,et al.  Chain Binomial Models and Binomial Autoregressive Processes , 2012, Biometrics.

[12]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[13]  C. Weiß,et al.  BINOMIAL AUTOREGRESSIVE PROCESSES WITH DENSITY‐DEPENDENT THINNING , 2014 .

[14]  Art B. Owen,et al.  Empirical Likelihood for Linear Models , 1991 .

[15]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[16]  Fukang Zhu,et al.  Empirical likelihood for linear and log-linear INGARCH models , 2015 .

[17]  Kai Yang,et al.  First-order random coefficients integer-valued threshold autoregressive processes , 2018 .

[18]  Soumendra N. Lahiri,et al.  A review of empirical likelihood methods for time series , 2014 .

[19]  Wai Keung Li,et al.  Self-Excited Threshold Poisson Autoregression , 2013, 1307.4626.

[20]  Kai Yang,et al.  An integer-valued threshold autoregressive process based on negative binomial thinning , 2018 .

[21]  Ngai Hang Chan,et al.  EMPIRICAL LIKELIHOOD FOR GARCH MODELS , 2006, Econometric Theory.

[22]  N. Chan,et al.  EMPIRICAL LIKELIHOOD FOR AUTOREGRESSIVE MODELS, WITH APPLICATIONS TO UNSTABLE TIME SERIES , 2002 .

[23]  An Approximation Model of the Collective Risk Model with INAR(1) Claim Process , 2014 .

[24]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[25]  Maria Eduarda Silva,et al.  Self-exciting threshold binomial autoregressive processes , 2015, AStA Advances in Statistical Analysis.

[26]  Yuichi Kitamura,et al.  Empirical likelihood methods with weakly dependent processes , 1997 .

[27]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[28]  H. Tong On a threshold model , 1978 .

[29]  Chi Hau Chen,et al.  Pattern recognition and signal processing , 1978 .

[30]  Ed. McKenzie,et al.  SOME SIMPLE MODELS FOR DISCRETE VARIATE TIME SERIES , 1985 .

[31]  Tobias A. Möller,et al.  Threshold Models for Integer-Valued Time Series with Infinite or Finite Range , 2015 .

[32]  Cathy W. S. Chen,et al.  Generalized Poisson autoregressive models for time series of counts , 2016, Comput. Stat. Data Anal..

[33]  Tobias A. Möller Self-exciting threshold models for time series of counts with a finite range , 2016 .