Incorporating structural information from the multichannel EEG improves patient-specific seizure detection

OBJECTIVE A novel patient-specific seizure detection algorithm is presented. As the spatial distribution of the ictal pattern is characteristic for a patient's seizures, this work incorporates such information into the data representation and provides a learning algorithm exploiting it. METHODS The proposed training algorithm uses nuclear norm regularization to convey structural information of the channel-feature matrices extracted from the EEG. This method is compared to two existing approaches utilizing the same feature set, but integrating the multichannel information in a different manner. The performances of the detectors are demonstrated on a publicly available dataset containing 131 seizures recorded in 892 h of scalp EEG from 22 pediatric patients. RESULTS The proposed algorithm performed significantly better compared to the reference approaches (p=0.0170 and p=0.0002). It reaches a median performance of 100% sensitivity, 0.11h(-1) false detection rate and 7.8s alarm delay, outperforming a method in the literature using the same dataset. CONCLUSION The strength of our method lies within conveying structural information from the multichannel EEG. Such formulation automatically includes crucial spatial information and improves detection performance. SIGNIFICANCE Our solution facilitates accurate classification performance for small training sets, therefore, it potentially reduces the time needed to train the detector before starting monitoring.

[1]  Johan A. K. Suykens,et al.  A kernel-based framework to tensorial data analysis , 2011, Neural Networks.

[2]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[3]  J. Gotman,et al.  A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device , 1997, IEEE Transactions on Biomedical Engineering.

[4]  M. De Vos,et al.  Automated artifact removal as preprocessing refines neonatal seizure detection , 2011, Clinical Neurophysiology.

[5]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[6]  Malek Adjouadi,et al.  Seizure Detection: An Assessment of Time- and Frequency-Based Features in a Unified Two-Dimensional Decisional Space Using Nonlinear Decision Functions , 2009, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[7]  Andrew Zisserman,et al.  Advances in Neural Information Processing Systems (NIPS) , 2007 .

[8]  R B Reilly,et al.  Classifier models and architectures for EEG-based neonatal seizure detection , 2008, Physiological measurement.

[9]  Kazuyuki Aihara,et al.  Classifying matrices with a spectral regularization , 2007, ICML '07.

[10]  John M. Stern,et al.  Atlas of EEG Patterns , 2004 .

[11]  Sabine Van Huffel,et al.  The use of LS-SVM in the classification of brain tumors based on Magnetic Resonance Spectroscopy signals , 2002, The European Symposium on Artificial Neural Networks.

[12]  Johan A. K. Suykens,et al.  Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  G. Lightbody,et al.  EEG-based neonatal seizure detection with Support Vector Machines , 2011, Clinical Neurophysiology.

[14]  S. Huffel,et al.  Automated neonatal seizure detection mimicking a human observer reading EEG , 2008, Clinical Neurophysiology.

[15]  Reza Tafreshi,et al.  Automated Real-Time Epileptic Seizure Detection in Scalp EEG Recordings Using an Algorithm Based on Wavelet Packet Transform , 2010, IEEE Transactions on Biomedical Engineering.

[16]  Konstantina S. Nikita,et al.  Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection , 2008, BIBE.

[17]  Sabine Van Huffel,et al.  Removal of Muscle Artifacts from EEG Recordings of Spoken Language Production , 2010, Neuroinformatics.

[18]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[19]  J. Engel,et al.  Surgery for seizures. , 1996, The New England journal of medicine.

[20]  G. Lightbody,et al.  A comparison of generative and discriminative approaches in automated neonatal seizure detection , 2009, 2009 IEEE International Symposium on Intelligent Signal Processing.

[21]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[22]  Pramod P Khargonekar,et al.  Support vector machines for seizure detection in an animal model of chronic epilepsy , 2010, Journal of neural engineering.

[23]  A. Aertsen,et al.  Detecting Epileptic Seizures in Long-term Human EEG: A New Approach to Automatic Online and Real-Time Detection and Classification of Polymorphic Seizure Patterns , 2008, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[24]  R. Harner,et al.  Patient-Specific Early Seizure Detection From Scalp Electroencephalogram , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[25]  Johan A. K. Suykens,et al.  LS-SVMlab Toolbox User's Guide , 2010 .

[26]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[27]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[28]  Xuelong Li,et al.  Supervised Tensor Learning , 2005, ICDM.

[29]  Ali H. Shoeb,et al.  Application of Machine Learning To Epileptic Seizure Detection , 2010, ICML.

[30]  Wim Van Paesschen,et al.  Canonical Correlation Analysis Applied to Remove Muscle Artifacts From the Electroencephalogram , 2006, IEEE Transactions on Biomedical Engineering.

[31]  Mark J. Cook,et al.  Epileptic Seizures and the EEG: Measurement, Models, Detection and Prediction , 2010 .

[32]  Deng Cai,et al.  Tensor Subspace Analysis , 2005, NIPS.

[33]  Josemir W Sander,et al.  The global burden and stigma of epilepsy , 2008, Epilepsy & Behavior.

[34]  J. Gotman,et al.  A system to detect the onset of epileptic seizures in scalp EEG , 2005, Clinical Neurophysiology.

[35]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[36]  Marco Signoretto Kernels and Tensors for Structured Data Modelling (Kernels en tensoren voor het modelleren van gestructureerde data) , 2011 .

[37]  Patrick Dupont,et al.  Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone , 2007, NeuroImage.

[38]  Brian Litt,et al.  One-Class Novelty Detection for Seizure Analysis from Intracranial EEG , 2006, J. Mach. Learn. Res..