Modeling lateral geniculate nucleus response with contrast gain control. Part 1: formulation.

A class of models for lateral geniculate nucleus (LGN) on-cell behavior is proposed. The models consist of a linear filter with divisive normalization by root mean square local contrast and include an intrinsic noise density parameter. The properties of these models are shown to match observed LGN behavior: (1) a linear response to low-magnitude stimuli; (2) a linear response without saturation (luxotonic behavior) for zero-contrast stimuli (homogeneous fields) with increasing magnitude; and (3) response saturation for nonzero contrast stimuli with increasing magnitude. The models possess an intrinsic scale for signal-to-noise ratio (SNR). The models show under and supersaturation, as well as saturation, for sinusoidal grating stimuli with increasing contrast and predict that different SNR regimes will cause a single neuron to show different contrast response curves. A companion paper [1] provides a detailed analysis of the full nonlinear response for sinusoidal grating stimuli and circular spot stimuli.

[1]  R. Marrocco,et al.  Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells. , 1972, Vision research.

[2]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[3]  M. McCourt,et al.  Modeling lateral geniculate nucleus response with contrast gain control. Part 2: analysis. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Robert A. Frazor,et al.  Local luminance and contrast in natural images , 2006, Vision Research.

[5]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[6]  Gregg E. Irvin,et al.  Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[7]  M. Carandini,et al.  Functional Mechanisms Shaping Lateral Geniculate Responses to Artificial and Natural Stimuli , 2008, Neuron.

[8]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[9]  J. B. Levitt,et al.  Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. , 2001, Journal of neurophysiology.

[10]  Matteo Carandini,et al.  Nonlinear Processing in LGN Neurons , 2003, NIPS.

[11]  J Papaioannou,et al.  Maintained activity of lateral geniculate nucleus neurons as a function of background luminance. , 1972, Experimental neurology.

[12]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[13]  R. Marrocco Possible neural basis of brighness magnitude estimations , 1975, Brain Research.

[14]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[15]  D. Snodderly,et al.  Intensity coding in primate visual system , 1978, Experimental Brain Research.

[16]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[17]  P. D. Spear,et al.  Visual receptive-field properties of single neurons in cat's ventral lateral geniculate nucleus. , 1977, Journal of neurophysiology.

[18]  D. Hubel Single unit activity in lateral geniculate body and optic tract of unrestrained cats , 1960, The Journal of physiology.

[19]  S. Morad,et al.  Ceramide-orchestrated signalling in cancer cells , 2012, Nature Reviews Cancer.

[20]  J R Bartlett,et al.  Luxotonic responses of units in macaque striate cortex. , 1979, Journal of neurophysiology.

[21]  Robert B. Barlow,et al.  Brightness sensation in a ganzfeld , 1976, Vision Research.

[22]  A. B. Bonds,et al.  Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus) , 2002, Visual Neuroscience.

[23]  J. Peirce The potential importance of saturating and supersaturating contrast response functions in visual cortex. , 2007, Journal of vision.

[24]  David Fitzpatrick,et al.  Luminance-Evoked Inhibition in Primary Visual Cortex: A Transient Veto of Simultaneous and Ongoing Response , 2006, The Journal of Neuroscience.

[25]  S. Solomon,et al.  Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus , 2001, The Journal of physiology.

[26]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[27]  P. D. Spear,et al.  Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. , 1994, Journal of neurophysiology.

[28]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[29]  Y. Zhou,et al.  Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings , 1996, Visual Neuroscience.

[30]  M. Carandini,et al.  The Suppressive Field of Neurons in Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[31]  Stephen D. Van Hooser,et al.  Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis). , 2003, Journal of neurophysiology.

[32]  Ralph D Freeman,et al.  Spatial frequency-specific contrast adaptation originates in the primary visual cortex. , 2007, Journal of neurophysiology.

[33]  L. P. O'Keefe,et al.  Functional organization of owl monkey lateral geniculate nucleus and visual cortex. , 1998, Journal of neurophysiology.

[34]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[35]  Earl L. Smith,et al.  Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast. , 1995, Journal of neurophysiology.

[36]  R. W. Doty TONIC RETINAL INFLUENCES IN PRIMATES * , 1977, Annals of the New York Academy of Sciences.

[37]  G. H. Jacobs,et al.  Center-surround balance in receptive fields of cells in the lateral geniculate nucleus. , 1970, Vision research.

[38]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[39]  Henry J. Alitto,et al.  A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys , 2011, The Journal of physiology.

[40]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.