Verifying a Parameterized Border Array in O ( n 1 . 5 )

The parameterized pattern matching problem is to check if there exists a renaming bijection on the alphabet with which a given pattern can be transformed into a substring of a given text. A parameterized border array (p-border array) is a parameterized version of a standard border array, and we can efficiently solve the parameterized pattern matching problem using p-border arrays. In this paper we present an O(n)-time O(n)-space algorithm to verify if a given integer array of length n is a valid p-border array for an unbounded alphabet. The best previously known solution takes time proportional to the n-th Bell number 1 e ∑∞ k=0 k k! , and hence our algorithm is quite efficient.

[1]  Alejandro A. Schäffer,et al.  Multiple Matching of Parameterized Patterns , 1994, CPM.

[2]  Hideo Bannai,et al.  Lightweight Parameterized Suffix Array Construction , 2009, IWOCA.

[3]  Arnaud Lefebvre,et al.  Border Array on Bounded Alphabet , 2002, Stringology.

[4]  Brenda S. Baker Parameterized Pattern Matching: Algorithms and Applications , 1996, J. Comput. Syst. Sci..

[5]  Moshe Lewenstein,et al.  Approximate Parameterized Matching , 2004, ESA.

[6]  S. Muthukrishnan,et al.  Alphabet Dependence in Parameterized Matching , 1994, Inf. Process. Lett..

[7]  Jens Stoye,et al.  Counting Suffix Arrays and Strings , 2005, SPIRE.

[8]  Arnaud Lefebvre,et al.  Efficient validation and construction of border arrays and validation of string matching automata , 2009, RAIRO Theor. Informatics Appl..

[9]  W. F. Smyth,et al.  Verifying a border array in linear time , 1999 .

[10]  Arnaud Lefebvre,et al.  Words over an ordered alphabet and suffix permutations , 2002, RAIRO Theor. Informatics Appl..

[11]  Maxime Crochemore,et al.  Cover Array String Reconstruction , 2010, CPM.

[12]  Maxime Crochemore,et al.  Reverse Engineering Prefix Tables , 2009, STACS.

[13]  Moshe Lewenstein,et al.  Parameterized matching with mismatches , 2007, J. Discrete Algorithms.

[14]  Ayumi Shinohara,et al.  Inferring Strings from Graphs and Arrays , 2003, MFCS.

[15]  Artur Jez,et al.  Validating the Knuth-Morris-Pratt Failure Function, Fast and Online , 2010, CSR.

[16]  S. Rao Kosaraju Faster Algorithms for the Construction of Parameterized Suffix Trees (Preliminary Version) , 1995, FOCS.

[17]  William F. Smyth,et al.  Counting Distinct Strings , 1999, Algorithmica.

[18]  Hideo Bannai,et al.  Counting Parameterized Border Arrays for a Binary Alphabet , 2009, LATA.