Scale-Invariant Extinction Time Estimates for Some Singular Diffusion Equations

We study three singular parabolic evolutions: the second-order total variation ow, the fourth-order total variation ow, and a fourth-order surface diusion law. Each has the property that the solution becomes identically zero in nite time. We prove scale-invariant estimates for the extinction time, using a simple argument which combines an energy estimate with a suitable Sobolev-type inequality.

[1]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[2]  R. Temam,et al.  Pseudosolutions of the time-dependent minimal surface problem , 1978 .

[3]  L. Freund,et al.  A variational approach to nonlinear dynamics of nanoscale surface modulations , 2003 .

[4]  V. Shenoy,et al.  Relaxation kinetics of nano-ripples on Cu(001) surface , 2004 .

[5]  Jürgen Saal,et al.  Nonlinear partial differential equations : asymptotic behavior of solutions and self-similar solutions , 2010 .

[6]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[7]  Yoshikazu Giga,et al.  Equations with Singular Diffusivity , 1998 .

[8]  Y. Kōmura,et al.  Nonlinear semi-groups in Hilbert space , 1967 .

[9]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[10]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[11]  J. Vázquez,et al.  Smoothing and decay estimates for nonlinear diffusion equations : equations of porous medium type , 2006 .

[12]  Y. Giga,et al.  Evolving Graphs by Singular Weighted Curvature , 1998 .

[13]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[14]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[15]  J. Villain,et al.  Flattening of grooves on a crystal surface: a method of investigation of surface roughness , 1988 .

[16]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[17]  On a lower bound for the extinction time of surfaces moved by mean curvature , 1993 .

[18]  Yoshikazu Giga,et al.  Very singular diffusion equations: second and fourth order problems , 2010 .

[19]  On the Strong Maximum Principle and the Large Time Behavior of Generalized Mean Curvature Flow with the Neumann Boundary Condition , 1999 .

[20]  H. Spohn,et al.  Self-similar morphology and dynamics of periodic surface profiles below the roughening transition , 1995 .

[21]  Yohei Kashima A subdifferential formulation of fourth order singular diffusion equations , 2003 .

[22]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[23]  H. Brezis,et al.  Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .

[24]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[25]  Mohammed Kbiri Alaoui,et al.  On Degenerate Parabolic Equations , 2011, Int. J. Math. Math. Sci..

[26]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[27]  Yoshikazu Giga,et al.  Very singular diffusion equations , 1999 .

[28]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[29]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[30]  Zangwill,et al.  Morphological equilibration of a corrugated crystalline surface. , 1990, Physical review. B, Condensed matter.

[31]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[32]  Robert V. Kohn,et al.  Continuum Relaxation of Interacting Steps on Crystal Surfaces in 2+1 Dimensions , 2006, Multiscale Model. Simul..

[33]  M. Murty Morphological stability of nanostructures , 2000 .

[34]  A. Damlamian,et al.  Application des méthodes de convexité et monotonie a l'étude de certaines équations quasi linéaires , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.