Nearly tight bounds for testing function isomorphism

We study the problem of testing isomorphism (equivalence up to relabelling of the variables) of two Boolean functions <i>f,g</i>: {0, 1}<sup><i>n</i></sup> → {0, 1}. Our main focus is on the most studied case, where one of the functions is given (explicitly) and the other function may be queried. We prove that for every <i>k</i> ≤ <i>n</i>, the worst-case query complexity of testing isomorphism to a given <i>k</i>-junta is Ω(<i>k</i>) and <i>O</i>(<i>k</i> log <i>k</i>). Consequently, the query complexity of testing function isomorphism is θ(<i>n</i>). Prior to this work, only lower bounds of Ω(log <i>k</i>) queries were known, for limited ranges of <i>k</i>, proved by Fischer et al. (FOCS 2002), Blais and O'Donnell (CCC 2010), and recently by Alon and Blais (RANDOM 2010). The nearly tight <i>O</i>(<i>k</i> log <i>k</i>) upper bound improves on the <i>Õ</i>(<i>k</i><sup>4</sup>) upper bound from Fischer et al. (FOCS 2002). Extending the lower bound proof, we also show polynomial query-complexity lower bounds for the problems of testing whether a function can be computed by a circuit of size ≤ <i>s</i>, and testing whether the Fourier degree of a function is ≤ <i>d</i>. This answers questions posed by Diakonikolas et al. (FOCS 2007). We also address two closely related problems -- 1. Testing isomorphism to a <i>k</i>-junta with one-sided error: we prove that for any 1 < <i>k</i> < <i>n</i> − 1, the query complexity is Ω(log (<sup><i>n</i></sup><sub><i>k</i></sub>)), which is almost optimal. This lower bound is a consequence of a proof that the query complexity of testing, with one-sided error, whether a function is a <i>k</i>-parity is Θ(log (<sup><i>n</i></sup><sub><i>k</i></sub>). 2. Testing isomorphism between two unknown functions that can be queried: we prove that the query complexity in this setting is Ω(√2<sup><i>n</i></sup>) and <i>O</i>(√2<sup><i>n</i></sup><i>n</i> log <i>n</i>).

[1]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[2]  László Babai,et al.  Property Testing of Equivalence under a Permutation Group Action , 2008, Electron. Colloquium Comput. Complex..

[3]  Ilias Diakonikolas,et al.  Testing for Concise Representations , 2007, FOCS 2007.

[4]  Noga Alon,et al.  Testing Low-Degree Polynomials over GF(2( , 2003, RANDOM-APPROX.

[5]  Dana Ron,et al.  Property Testing: A Learning Theory Perspective , 2007, COLT.

[6]  Dana Ron,et al.  Improved Testing Algorithms for Monotonicity , 1999, Electron. Colloquium Comput. Complex..

[7]  Atri Rudra,et al.  Testing low-degree polynomials over prime fields , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Rocco A. Servedio,et al.  Testing for Concise Representations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[9]  Eldar Fischer,et al.  A Review of Graph Grammars and Preview of ICGT 2002: The First International Conference on Graph Transformation. , 2001 .

[10]  Eldar Fischer The Difficulty of Testing for Isomorphism against a Graph That Is Given in Advance , 2005, SIAM J. Comput..

[11]  Ryan O'Donnell,et al.  Testing ±1-weight halfspace , 2009, APPROX-RANDOM.

[12]  Eldar Fischer,et al.  The Art of Uninformed Decisions , 2001, Bull. EATCS.

[13]  Ronitt Rubinfeld,et al.  Testing random variables for independence and identity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[14]  Shachar Lovett,et al.  Random low-degree polynomials are hard to approximate , 2009, computational complexity.

[15]  Dana Ron,et al.  Algorithmic and Analysis Techniques in Property Testing , 2010, Found. Trends Theor. Comput. Sci..

[16]  Hana Chockler,et al.  A lower bound for testing juntas , 2004, Inf. Process. Lett..

[17]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[18]  Jirí Sgall,et al.  Functions that have read-twice constant width branching programs are not necessarily testable , 2004, Random Struct. Algorithms.

[19]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[20]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[21]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[22]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[23]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[24]  Rocco A. Servedio,et al.  Testing Halfspaces , 2007, SIAM J. Comput..

[25]  Guy Kindler,et al.  Testing juntas , 2002, J. Comput. Syst. Sci..

[26]  Ryan O'Donnell,et al.  Lower Bounds for Testing Function Isomorphism , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[27]  Ryan O'Donnell,et al.  Testing +/- 1-Weight Halfspaces , 2009 .

[28]  Dana Ron Property Testing: A Learning Theory Perspective , 2008, Found. Trends Mach. Learn..

[29]  Ronitt Rubinfeld,et al.  Sublinear Time Algorithms , 2011, SIAM J. Discret. Math..

[30]  Noga Alon,et al.  Testing Boolean Function Isomorphism , 2010, APPROX-RANDOM.

[31]  Benny Sudakov,et al.  Set Systems with Restricted Cross-Intersections and the Minimum Rank of Inclusion Matrices , 2005, SIAM J. Discret. Math..

[32]  Oded Goldreich On Testing Computability by Small Width OBDDs , 2010, Electron. Colloquium Comput. Complex..

[33]  Dana Ron,et al.  Testing Basic Boolean Formulae , 2002, SIAM J. Discret. Math..

[34]  Sourav Chakraborty,et al.  Efficient Sample Extractors for Juntas with Applications , 2011, ICALP.

[35]  Dana Ron,et al.  Testing Polynomials over General Fields , 2006, SIAM J. Comput..

[36]  Ronitt Rubinfeld,et al.  Robust Characterizations of Polynomials with Applications to Program Testing , 1996, SIAM J. Comput..

[37]  Aravind Srinivasan,et al.  Chernoff-Hoeffding bounds for applications with limited independence , 1995, SODA '93.

[38]  Eldar Fischer,et al.  Testing graph isomorphism , 2006, SODA '06.

[39]  Eric Blais Testing juntas nearly optimally , 2009, STOC '09.