Proximal point method for a special class of nonconvex functions on Hadamard manifolds

In this article, we present the proximal point method for finding minima of a special class of nonconvex function on a Hadamard manifold. The well definedness of the sequence generated by the proximal point method is established. Moreover, it is proved that each accumulation point of this sequence satisfies the necessary optimality conditions and, under additional assumptions, its convergence for a minima is obtained.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  O. Rothaus Domains of Positivity , 1958 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[5]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[6]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[7]  J. Spingarn Submonotone mappings and the proximal point algorithm , 1982 .

[8]  D. Motreanu,et al.  Quasi-tangent vectors in flow-invariance and optimization problems on Banach manifolds , 1982 .

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Optimization problems on complete Riemannian manifolds , 1987 .

[11]  Wolfgang Thämelt Directional derivatives and generalized gradients on manifolds , 1992 .

[12]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[13]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[14]  Tamás Rapcsák,et al.  Smooth Nonlinear Optimization in Rn , 1997 .

[15]  Németh S.Z.,et al.  Five kinds of monotone vector fields , 1998 .

[16]  Alexander Kaplan,et al.  Proximal Point Methods and Nonconvex Optimization , 1998, J. Glob. Optim..

[17]  O. P. Ferreira,et al.  Subgradient Algorithm on Riemannian Manifolds , 1998 .

[18]  Sandor Nemeth Geodesic monotone vector fields. , 1999 .

[19]  Sandor Nemeth Monotonicity of the Complementary Vector Field of a Nonexpansive Map , 1999 .

[20]  Orizon P. Ferreira,et al.  Monotone point-to-set vector fields. , 2000 .

[21]  O. P. Ferreira,et al.  Contributions to the Study of Monotone Vector Fields , 2002 .

[22]  O. P. Ferreira,et al.  Proximal Point Algorithm On Riemannian Manifolds , 2002 .

[23]  E. Castorina,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002 .

[24]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[25]  Michael J. Todd,et al.  On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..

[26]  S. Németh Variational inequalities on Hadamard manifolds , 2003 .

[27]  J. Ferrera,et al.  Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds , 2003, math/0305427.

[28]  M. Teboulle,et al.  Singular Riemannian barrier methods and gradient-projection dynamical systems for constrained optimization , 2004 .

[29]  Tamás Rapcsák,et al.  Local Convexity on Smooth Manifolds , 2005 .

[30]  João X. da Cruz Neto,et al.  Convex- and Monotone-Transformable Mathematical Programming Problems and a Proximal-Like Point Method , 2006, J. Glob. Optim..

[31]  Chong Li,et al.  Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition , 2006 .

[32]  Jinhua Wang,et al.  Uniqueness of the singular points of vector fields on Riemannian manifolds under the gamma-condition , 2006, J. Complex..

[33]  O. P. Ferreira Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds , 2006 .

[34]  A. Barani,et al.  Invex sets and preinvex functions on Riemannian manifolds , 2007 .

[35]  Pierre-Antoine Absil,et al.  Trust-Region Methods on Riemannian Manifolds , 2007, Found. Comput. Math..

[36]  Yu. S. Ledyaev,et al.  Nonsmooth analysis on smooth manifolds , 2007 .

[37]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[38]  P. Roberto Oliveira,et al.  Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds , 2008 .

[39]  Paulo Roberto Oliveira,et al.  Proximal point method for a special class of nonconvex functions on Hadamard manifolds , 2008, 0812.2201.

[40]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[41]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds , 2008 .

[42]  Chong Li,et al.  Monotone vector fields and the proximal point algorithm on Hadamard manifolds , 2009 .

[43]  P. R. Oliveira,et al.  Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds , 2009 .

[44]  M. R. Pouryayevali,et al.  Invariant monotone vector fields on Riemannian manifolds , 2009 .

[45]  Chong Li,et al.  EXTENDED NEWTON’S METHOD FOR MAPPINGS ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE , 2009 .

[46]  Warren Hare,et al.  Computing proximal points of nonconvex functions , 2008, Math. Program..

[47]  Chong Li,et al.  Existence of solutions for variational inequalities on Riemannian manifolds , 2009 .

[48]  J. H. Wang,et al.  Monotone and Accretive Vector Fields on Riemannian Manifolds , 2010 .