Representations of torsion-free arithmetic matroids

We study the representability problem for torsion-free arithmetic matroids. By using a new operation called "reduction" and a "signed Hermite normal form", we provide and implement an algorithm to compute all the representations, up to equivalence. As an application, we disprove two conjectures about the poset of layers and the independence poset of a toric arrangement.

[1]  Corrado De Concini,et al.  Topics in Hyperplane Arrangements, Polytopes and Box-Splines , 2010 .

[2]  Emanuele Delucchi,et al.  The integer cohomology algebra of toric arrangements , 2015, 1504.06169.

[3]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[4]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[5]  Giovanni Paolini Shellability of generalized Dowling posets , 2020, J. Comb. Theory, Ser. A.

[6]  Matthias Lenz Representations of Weakly Multiplicative Arithmetic Matroids are Unique , 2017, Annals of Combinatorics.

[7]  Alex Fink,et al.  Polyhedra and parameter spaces for matroids over valuation rings , 2017, Advances in Mathematics.

[8]  James G. Oxley,et al.  Matroid theory , 1992 .

[9]  Emanuele Delucchi,et al.  Stanley–Reisner rings for symmetric simplicial complexes, $G$-semimatroids and Abelian arrangements , 2018, Journal of Combinatorial Algebra.

[10]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[11]  Combinatorics of toric arrangements , 2017, Rendiconti Lincei - Matematica e Applicazioni.

[12]  Roberto Pagaria Two examples of toric arrangements , 2019, J. Comb. Theory, Ser. A.

[13]  Matthias Lenz Computing the poset of layers of a toric arrangement , 2017 .

[14]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[15]  Emanuele Delucchi,et al.  Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems , 2019, Electron. J. Comb..

[16]  Luca Moci,et al.  The multivariate arithmetic Tutte polynomial , 2012 .

[17]  B. Sturmfels Oriented Matroids , 1993 .

[18]  Ivan Martino,et al.  Face Module for Realizable Z-matroids , 2017, Contributions Discret. Math..

[19]  M. Aguiar,et al.  Topics in Hyperplane Arrangements , 2017 .

[20]  Matthias Lenz Stanley-Reisner rings for quasi-arithmetic matroids , 2017, 1709.03834.

[21]  Roberto Pagaria,et al.  Orientable arithmetic matroids , 2018, Discret. Math..

[22]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.