Averages of ratios of characteristic polynomials for the compact classical groups

Averages of ratios of characteristic polynomials for the compact classical groups are evaluated in terms of determinants whose dimensions are independent of the matrix rank. These formulas are shown to be equivalent to expressions for the same averages obtained in a previous study, which was motivated by applications to analytic number theory. Our approach uses classical methods of random matrix theory, in particular determinants and orthogonal polynomials, and can be considered more elementary than the method of Howe pairs used in the previous study.

[1]  P. Forrester,et al.  Formulas for the Evaluation of Toeplitz Determinants with Rational Generating Functions , 2006 .

[2]  A. Borodin,et al.  Averages of characteristic polynomials in random matrix theory , 2004, math-ph/0407065.

[3]  D. Farmer,et al.  AUTOCORRELATION OF RATIOS OF CHARACTERISTIC POLYNOMIALS AND OF L-FUNCTIONS , 2004 .

[4]  J. Baik,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003, math-ph/0304016.

[5]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[6]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[7]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[8]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[9]  J. Brian Conrey,et al.  Mean values of L-functions and symmetry , 1999, math/9912107.

[10]  J. Conrey,et al.  High moments of the Riemann zeta-function , 1999, math/9902162.

[11]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[12]  Abdul L. Bello,et al.  Tables of Integrals, Series, and Products , 1995 .

[13]  Kannan Soundararajan,et al.  Mean-values of the Riemann zeta-function , 1995 .

[14]  D. Farmer Mean values of ζ ′ / ζ and the Gaussian unitary ensemble hypothesis , 1995 .

[15]  A. Ghosh,et al.  On mean values of the zeta-function, II , 1989 .

[16]  J. Conrey,et al.  On mean values of the zeta-function , 1984 .

[17]  K. Michael Day,et al.  Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function , 1975 .

[18]  Notices , 1964 .

[19]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[20]  A. C. Aitken,et al.  Determinants and matrices , 1940 .

[21]  A. E. Ingham Mean-Value Theorems in the Theory of the Riemann Zeta-Function , 1928 .

[22]  J. Littlewood,et al.  Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes , 1916 .