Exploring water confinement in 2D nanocapillaries through dielectric spectroscopy: A path to the rational design of selective 2D membranes for alcohol-water separation

[1]  Yanying Wei,et al.  Water’s motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled , 2023, Nano Research.

[2]  Balaraman Ravindran,et al.  Critical Review of Biochemical Pathways to Transformation of Waste and Biomass into Bioenergy. , 2023, Bioresource technology.

[3]  Yu Cao,et al.  Covalent organic framework membranes for efficient separation of monovalent cations , 2022, Nature Communications.

[4]  Wenfu Xie,et al.  Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation , 2022, Science.

[5]  Peiyong Qin,et al.  Polydimethylsiloxane based membranes for biofuels pervaporation , 2022, Separation and Purification Technology.

[6]  Mao Wang,et al.  Multilayered graphene oxide membranes for bioethanol purification: Microscopic insight from molecular simulation , 2022, Journal of Membrane Science.

[7]  Jun Zhao,et al.  Ultrafast seawater desalination with covalent organic framework membranes , 2022, Nature Sustainability.

[8]  W. Cai,et al.  Analyzing the Water Confined in Hydrogel Using Near-Infrared Spectroscopy , 2022, Applied spectroscopy.

[9]  Jin Zhao,et al.  Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials , 2021, Nature Communications.

[10]  Tiantian Gao,et al.  Recent progress on the smart membranes based on two-dimensional materials , 2021, Chinese Chemical Letters.

[11]  K. Eom,et al.  NaCl increases the dielectric constant of nanoconfined water in phospholipid multilamellar vesicle by enhancing intermolecular orientation correlation rather than rotational freedom of individual molecules , 2021 .

[12]  D. Morineau,et al.  Influence of Pore Surface Chemistry on the Rotational Dynamics of Nanoconfined Water , 2021, 2107.12798.

[13]  S. Haigh,et al.  Ion exchange in atomically thin clays and micas , 2021, Nature Materials.

[14]  W. Jin,et al.  Ultrafast Water Transport in Two-Dimensional Channels Enabled by Spherical Polyelectrolyte Brushes with Controllable Flexibility. , 2021, Angewandte Chemie.

[15]  E. Drioli,et al.  Planning of smart gating membranes for water treatment. , 2021, Chemosphere.

[16]  T. Haishi,et al.  Dynamic ionic radius of alkali metal ions in aqueous solution: a pulsed-field gradient NMR study , 2021, RSC advances.

[17]  Pawin Iamprasertkun,et al.  Water friction in nanofluidic channels made from two-dimensional crystals , 2021, Nature Communications.

[18]  Xu Deng,et al.  Artificial water-channel membranes for desalination. , 2021, Science bulletin.

[19]  Jia-Qi Hu,et al.  A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. , 2020, ACS applied materials & interfaces.

[20]  Yingtang Zhang,et al.  Dielectric relaxation processes in PVDF composite , 2020 .

[21]  S. Haigh,et al.  Capillary condensation under atomic-scale confinement , 2020, Nature.

[22]  P. Bai,et al.  Fabrication of a sandwiched silicalite-1 membrane in a 2D confined space for enhanced alcohol/water separation. , 2020, Chemical communications.

[23]  K. Horchani-Naifer,et al.  Investigations on electrical conductivity and dielectric properties of graphene oxide nanosheets synthetized from modified Hummer’s method , 2020, Journal of Molecular Structure.

[24]  L. Artús,et al.  Pressure dependence of the interlayer and intralayer E2g Raman-active modes of hexagonal BN up to the wurtzite phase transition , 2020 .

[25]  Xiaoquan Lu,et al.  Two-dimensional material membranes for critical separations , 2020, Inorganic Chemistry Frontiers.

[26]  Zongli Xie,et al.  2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination , 2020 .

[27]  N. Zhao,et al.  Molecular insights into the microstructure of ethanol/water binary mixtures confined within typical 2D nanoslits: The role of the adsorbed layers induced by different solid surfaces , 2020 .

[28]  A. Michaelides,et al.  Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation , 2020, Nature Communications.

[29]  Maurício Nunes Kleinberg,et al.  Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes , 2019 .

[30]  W. Cai,et al.  Air‐Liquid Interfacial Self‐Assembly of Two‐Dimensional Periodic Nanostructured Arrays , 2019, ChemNanoMat.

[31]  Zeyu Zhang,et al.  Photothermal-responsive graphene oxide membrane with smart gates for water purification. , 2019, ACS applied materials & interfaces.

[32]  Wei Zhu,et al.  Molecular insights on the microstructures of nanoconfined glycerol and its aqueous solutions: The effects of interfacial properties, temperature, and glycerol concentration , 2019, Journal of Molecular Liquids.

[33]  Hongjian Wang,et al.  Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations , 2019, Nature Communications.

[34]  M. Lozada-Hidalgo,et al.  Complete steric exclusion of ions and proton transport through confined monolayer water , 2018, Science.

[35]  M. Rezakazemi,et al.  Biofuel types and membrane separation , 2018, Environmental Chemistry Letters.

[36]  D. Aurbach,et al.  Direct Assessment of Nanoconfined Water in 2D Ti3C2 Electrode Interspaces by a Surface Acoustic Technique. , 2018, Journal of the American Chemical Society.

[37]  Patrick O. Saboe,et al.  Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes , 2018, Nature Communications.

[38]  Gongpin Liu,et al.  2D MXene Nanofilms with Tunable Gas Transport Channels , 2018, Advanced Functional Materials.

[39]  S. Haigh,et al.  Ballistic molecular transport through two-dimensional channels , 2018, Nature.

[40]  F. Bai,et al.  A novel close-circulating vapor stripping-vapor permeation technique for boosting biobutanol production and recovery , 2018, Biotechnology for Biofuels.

[41]  A. S. Volkov,et al.  Analysis of Experimental Results by the Havriliak–Negami Model in Dielectric Spectroscopy , 2018 .

[42]  Jun Lou,et al.  High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification , 2018 .

[43]  Palash V. Acharya,et al.  Fundamental interfacial mechanisms underlying electrofreezing. , 2017, Advances in colloid and interface science.

[44]  D. Galvão,et al.  Insights on the mechanism of water-alcohol separation in multilayer graphene oxide membranes: Entropic versus enthalpic factors , 2017, 1706.06213.

[45]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[46]  Sarah J. Haigh,et al.  Tunable sieving of ions using graphene oxide membranes. , 2017, Nature nanotechnology.

[47]  Wanqin Jin,et al.  Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. , 2016, Angewandte Chemie.

[48]  D. Bhattacharyya,et al.  Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide , 2016, Nature Communications.

[49]  Cong-jie Gao,et al.  Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes , 2015 .

[50]  I. Natkaniec,et al.  Computationally Supported Neutron Scattering Study of Parent and Chemically Reduced Graphene Oxide , 2015 .

[51]  S. Koda,et al.  Study on the temperature-dependent coupling among viscosity, conductivity and structural relaxation of ionic liquids. , 2015, Physical chemistry chemical physics : PCCP.

[52]  E. Illeková,et al.  Confined water in controlled pore glass CPG-10-120 studied by positron annihilation lifetime spectroscopy and differential scanning calorimetry , 2015 .

[53]  Quan-hong Yang,et al.  On the origin of the stability of graphene oxide membranes in water. , 2015, Nature chemistry.

[54]  K. Zhao,et al.  Thermodynamics of micellization of ionic liquids C6mimBr and orientation dynamics of water for C6mimBr-water mixtures: a dielectric spectroscopy study. , 2014, The journal of physical chemistry. B.

[55]  Jie Shen,et al.  A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. , 2014, Angewandte Chemie.

[56]  Ping Wei,et al.  A review of membrane technology for bioethanol production , 2014 .

[57]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[58]  R. Khusnutdinoff Dynamics of a network of hydrogen bonds upon water electrocrystallization , 2013, Colloid Journal.

[59]  C. Cametti,et al.  Anomalous Debye-like dielectric relaxation of water in micro-sized confined polymeric systems. , 2013, Physical chemistry chemical physics : PCCP.

[60]  Y. Marcus Are Ionic Stokes Radii of Any Use? , 2012, Journal of Solution Chemistry.

[61]  N. Xu,et al.  High-Flux MFI Zeolite Membrane Supported on YSZ Hollow Fiber for Separation of Ethanol/Water , 2012 .

[62]  I. Grigorieva,et al.  Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes , 2011, Science.

[63]  K. Poduska,et al.  Roughness effects on contact angle measurements , 2008 .

[64]  Toshinori Mori,et al.  Neutron scattering and dielectric studies on dynamics of methanol and ethanol confined in MCM-41 , 2008 .

[65]  Liqun Zhang,et al.  Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation. , 2007, The Journal of chemical physics.

[66]  Takehiko Kitamori,et al.  NMR study of water molecules confined in extended nanospaces. , 2007, Angewandte Chemie.

[67]  Sangyoub Lee,et al.  Freezing transition of interfacial water at room temperature under electric fields. , 2005, Physical review letters.

[68]  A. Mark,et al.  Electrofreezing of confined water. , 2004, The Journal of chemical physics.

[69]  Pratibha Pandey,et al.  Membranes for gas separation , 2001 .

[70]  P. Jacobsson,et al.  Dielectric study of supercooled 2D-water in a vermiculite clay , 2000 .

[71]  B. Bagchi,et al.  Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. , 2000, Chemical reviews.

[72]  J. Swenson,et al.  Dynamics of supercooled water in confined geometry , 2000, Nature.

[73]  P. Mantas,et al.  Dielectric response of materials: extension to the Debye model , 1999 .

[74]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[75]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[76]  E. Grant,et al.  Dielectric and viscosity studies on the dipeptides of alanine and glycine , 1967 .

[77]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[78]  R. Cole,et al.  Dielectric Relaxation in Glycerol, Propylene Glycol, and n‐Propanol , 1951 .

[79]  Geliang Yu,et al.  Tunable mass transport in the artificial smart membranes based on two-dimensional materials , 2022, Advanced Membranes.

[80]  Gongpin Liu,et al.  Membrane materials targeting carbon capture and utilization , 2022, Advanced Membranes.

[81]  L. Chu,et al.  Advanced membranes with responsive two-dimensional nanochannels , 2021, Advanced Membranes.

[82]  K. Sadasivuni,et al.  Chapter 10 – Dielectric Spectroscopy , 2017 .

[83]  Hao Cai,et al.  An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy , 2017 .

[84]  S. Moldoveanu,et al.  Chapter 6 – Solvent Extraction , 2015 .

[85]  John X. J. Zhang,et al.  Microfluidics and Micro Total Analytical Systems , 2014 .

[86]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .