Towards reliable real-time person detection

We propose a robust real-time person detection system, which aims to serve as solid foundation for developing solutions at an elevated level of reliability. Our belief is that clever handling of input data correlated with efficacious training algorithms are key for obtaining top performance. We introduce a comprehensive training method based on random sampling that compiles optimal classifiers with minimal bias and overfit rate. Building upon recent advances in multi-scale feature computations, our approach attains state-of-the-art accuracy while running at high frame rate.

[1]  Ramakant Nevatia,et al.  Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[2]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[4]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[5]  Ramakant Nevatia,et al.  Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Inho Choi,et al.  Multi-scale Integral Modified Census Transform for Eye Detection , 2012, ISVC.

[7]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Bernt Schiele,et al.  Multi-cue onboard pedestrian detection , 2009, CVPR.

[9]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[10]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[12]  Pietro Perona,et al.  Multiple Component Learning for Object Detection , 2008, ECCV.

[13]  Dariu Gavrila,et al.  A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Bernt Schiele,et al.  Disparity statistics for pedestrian detection: combining appearance, motion and stereo , 2010, ECCV 2010.

[15]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[16]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Bernt Schiele,et al.  A Performance Evaluation of Single and Multi-feature People Detection , 2008, DAGM-Symposium.

[18]  E. Rückert Detecting Pedestrians by Learning Shapelet Features , 2007 .

[19]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[20]  Larry S. Davis,et al.  Multiple instance fFeature for robust part-based object detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Zhuowen Tu,et al.  Feature Mining for Image Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[23]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Charless C. Fowlkes,et al.  Multiresolution Models for Object Detection , 2010, ECCV.

[25]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Larry S. Davis,et al.  Multiple instance fFeature for robust part-based object detection , 2009, CVPR.

[27]  Paul A. Viola,et al.  Multiple-Instance Pruning For Learning Efficient Cascade Detectors , 2007, NIPS.

[28]  Piotr Dollár,et al.  Crosstalk Cascades for Frame-Rate Pedestrian Detection , 2012, ECCV.

[29]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[30]  Serge J. Belongie,et al.  Simultaneous Learning and Alignment: Multi-Instance and Multi-Pose Learning ? , 2008 .

[31]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[32]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[34]  Luc Van Gool,et al.  Pedestrian detection at 100 frames per second , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Pietro Perona,et al.  Unsupervised learning of models for object recognition , 2000 .

[37]  Jitendra Malik,et al.  Efficient shape matching using shape contexts , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.