A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope

In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25-1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90 times 180 mum ). We present details on the mixer design and measurement results, including receiver noise performance, stability and ldquofirst-lightrdquo at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.

[1]  R. Blundell,et al.  An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance , 2005, IEEE Transactions on Applied Superconductivity.

[2]  J. R. Gao,et al.  Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers , 2004 .

[3]  Simon J. E. Radford,et al.  A Map of OMC-1 in CO J = 9→8 , 2003, astro-ph/0405530.

[4]  Andrei Sergeev,et al.  Wide-band highspeed Nb and YBaCuO detectors , 1991 .

[5]  Michael Olberg,et al.  A Swedish heterodyne facility instrument for the APEX telescope , 2008 .

[6]  Victor Belitsky,et al.  All-metal micromachining for the fabrication of sub-millimetre and THz waveguide components and circuits , 2008 .

[7]  Andrey M. Baryshev,et al.  Direct detection effect in small volume hot electron bolometer mixers , 2005 .

[8]  R. Blundell,et al.  Temperature Resolution of an HEB Receiver at 810 GHz , 2009, IEEE Transactions on Applied Superconductivity.

[9]  S. N. Paine,et al.  Observations in the 1.3 and 1.5 THz atmospheric windows with the Receiver Lab Telescope , 2005, astro-ph/0505273.

[10]  G. Gol'tsman,et al.  A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations , 2004, IEEE Transactions on Microwave Theory and Techniques.

[11]  R. Blundell,et al.  Gain stabilization of a submillimeter SIS heterodyne receiver , 2005, IEEE Transactions on Microwave Theory and Techniques.

[12]  Goutam Chattopadhyay,et al.  A 530-GHz balanced mixer , 1999 .

[13]  Anthony R. Kerr,et al.  DESIGN OF PLANAR IMAGE SEPARATING AND BALANCED SIS MIXERS , 1996 .

[14]  R. Schieder,et al.  Stability of heterodyne terahertz receivers , 2006 .

[15]  Eugene Serabyn,et al.  Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions , 2001 .

[16]  M. Kroug,et al.  Low-noise 0.8-0.96- and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the herschel space observatory , 2006, IEEE Transactions on Microwave Theory and Techniques.

[17]  U. U. Graf,et al.  First observations with CONDOR, a 1.5 THz heterodyne receiver , 2006, astro-ph/0606560.

[18]  Gregory N. Goltsman,et al.  Design and performance of the lattice-cooled hot-electron terahertz mixer , 2000 .

[19]  Simon J. E. Radford,et al.  A Fourier Transform Spectrometer for Measurement of Atmospheric Transmission at Submillimeter Wavelengths , 2000 .

[20]  Tatsuo Itoh,et al.  A Quasi-Optical Polarization-Duplexed Balanced Mixer for Millimeter-Wave Applications , 1983 .

[21]  D. Henke,et al.  Facility heterodyne receiver for the Atacama Pathfinder Experiment Telescope , 2007, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[22]  Hideo Ogawa,et al.  Numerical Matrix Analysis for Performances of Wideband 100GHz Branch-Line Couplers , 2003 .

[23]  V. Vassilev,et al.  Waveguide-to-microstrip transition with integrated bias-T , 2003, IEEE Microwave and Wireless Components Letters.

[24]  M. Pantaleev,et al.  Micromachining approach in fabricating of THz waveguide components , 2005, Microelectron. J..

[25]  Goutam Chattopadhyay,et al.  Noise Stability of SIS Receivers , 2000 .

[26]  Nathan Marcuvitz Waveguide Handbook , 1951 .

[27]  R. Blundell,et al.  Stabilisation of a Terahertz Hot-Electron Bolometer mixer with microwave feedback control , 2007 .

[28]  Jonas Zmuidzinas,et al.  Heterodyne Instrumentation Upgrade at the Caltech Submillimeter Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  Miroslav Pantaleev,et al.  Low Noise and Low Power Consumption Cryogenic Amplifiers for Onsala and APEX Telescopes , 2004 .

[30]  R. Blundell,et al.  The sensitivity and IF bandwidth of waveguide NbN Hot Electron Bolometer Mixer on MgO buffer layers crystalline quartz , 2002 .

[31]  B. Vowinkel,et al.  Characterization and Measurement of System Stability , 1986, Other Conferences.

[32]  J. Stern,et al.  Development of 1 THz SIS mixer for SOFIA , 2008 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  T. M. Klapwijk,et al.  Low noise NbN hot electron bolometer mixer at 4.3?THz , 2007 .

[35]  C. Kasemann,et al.  The APEX digital Fast Fourier Transform Spectrometer , 2006 .

[36]  Sergey Cherednichenko,et al.  Stability of HEB receivers at THz frequencies , 2004, SPIE Astronomical Telescopes + Instrumentation.

[37]  Sergey Cherednichenko,et al.  Hot-electron bolometer terahertz mixers for the Herschel Space Observatory. , 2008, The Review of scientific instruments.

[38]  J. Lesurf Millimetre-wave optics, devices, and systems , 1990 .

[39]  Raymond Blundell,et al.  Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer , 2003 .

[40]  Miroslav Pantaleev,et al.  Balanced Waveguide HEB Mixer for APEX 1.3 THz Receiver , 2005 .

[41]  Wenlei Shan,et al.  A 400–500 GHz Balanced SIS Mixer with a Waveguide Quadrature Hybrid Coupler , 2008 .