Differential Chow varieties exist

The Chow variety is a parameter space for effective algebraic cycles on Pn (or An ) of given dimension and degree. We construct its analog for differential algebraic cycles on An , answering a question of Gao, Li and Yuan [Trans. Amer. Math. Soc. 365 (2013) 4575–4632]. The proof uses the construction of classical algebro‐geometric Chow varieties, the theory of characteristic sets of differential varieties and algebraic varieties, the theory of prolongation spaces and the theory of differential Chow forms. In the course of the proof, several definability results from the theory of algebraically closed fields are required. Elementary proofs of these results are given in the appendix.

[1]  Xiao-Shan Gao,et al.  Intersection theory in differential algebraic geometry: Generic intersections and the differential Chow form , 2010, Transactions of the American Mathematical Society.

[2]  Phyllis J. Cassidy,et al.  Differential algebraic groups , 1972 .

[3]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[4]  E. Friedlander Homology using Chow varieties , 1989 .

[5]  B. L. Waerden,et al.  Zur algebraischen Geometrie. IX , 1937 .

[6]  Anand Pillay,et al.  A Note on the Axioms for Differentially Closed Fields of Characteristic Zero , 1998 .

[7]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[8]  Akira FUJIKI,et al.  On the douady space of a compact complex space in the category , 1982, Nagoya Mathematical Journal.

[9]  R. Moosa,et al.  Jet and prolongation spaces , 2010, Journal of the Institute of Mathematics of Jussieu.

[10]  Bernd Sturmfels,et al.  Introduction to Chow Forms , 1995 .

[11]  E. R. Kolchin,et al.  The notion of dimension in the theory of algebraic differential equations , 1964 .

[12]  Brahim Sadik,et al.  A Bound for the Order of Characteristic Set Elements of an Ordinary Prime Differential Ideal and some Applications , 2000, Applicable Algebra in Engineering, Communication and Computing.

[13]  Y. Watanabe,et al.  IV , 2018, Out of the Shadow.

[14]  Rahim Moosa,et al.  On canonical bases and internality criteria , 2007, 0705.4078.

[15]  Akira Fujiki On the Douady space of a compact complex space in the category ${\cal C}$ , 1982 .

[16]  R. Hoobler,et al.  DIFFERENTIAL SCHEMES , 2000 .

[17]  Uwe Storch,et al.  Bemerkung zu einem Satz von M. Kneser , 1972 .

[18]  A. Pillay,et al.  Differential arcs and regular types in differential fields , 2008 .

[19]  Xiao-Shan Gao,et al.  Sparse differential resultant , 2011, ISSAC '11.

[20]  L. van den Dries,et al.  Bounds in the theory of polynomial rings over fields. A nonstandard approach , 1984 .

[21]  J. Freitag Model Theory and Differential Algebraic Geometry , 2012 .

[22]  Wu Wen-tsun Basic principles of mechanical theorem proving in elementary geometries , 1986 .

[23]  Completeness in partial differential algebraic geometry , 2014 .

[24]  A. Seidenberg Constructions in algebra , 1974 .

[25]  Martin Ziegler,et al.  Jet spaces of varieties over differential and difference fields , 2003 .

[26]  E. R. Kolchin,et al.  Differential algebraic groups , 1986 .

[27]  A. Pillay,et al.  Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties , 2000 .

[28]  Ehud Hrushovski,et al.  On model complete differential fields , 2003 .

[29]  Zo'e Chatzidakis,et al.  A note on canonical bases and one-based types in supersimple theories , 2011, 1201.0134.

[30]  F. Campana,et al.  Algébricité et compacité dans l'espace des cycles d'un espace analytique complexe , 1980 .

[31]  James Freitag,et al.  Bertini theorems for differential algebraic geometry , 2012, 1211.0972.

[32]  Matthew Harrison-Trainor,et al.  Nonstandard methods for bounds in differential polynomial rings , 2011, 1105.0600.

[33]  Wei Li,et al.  Computation of Differential Chow Forms for Prime Differential Ideals , 2015, ArXiv.

[34]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[35]  J. Todd Methods of Algebraic Geometry , 1948, Nature.

[36]  David Eisenbud,et al.  Every algebraic set inn-space is the intersection ofn hypersurfaces , 1973 .

[37]  Wei Li,et al.  Computation of differential Chow forms for ordinary prime differential ideals , 2016, Adv. Appl. Math..

[38]  Oleg Golubitsky,et al.  On the generalized Ritt problem as a computational problem , 2009 .

[39]  Joe Harris,et al.  3264 and All That: A Second Course in Algebraic Geometry , 2016 .

[40]  A. Grothendieck Étude locale des schémas et des morphismes de schémas , 1964 .

[41]  Ehud Hrushovski Strongly minimal expansions of algebraically closed fields , 1992 .