Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1

Abstract In this paper, two new series for the logarithm of the Γ-function are presented and studied. Their polygamma analogs are also obtained and discussed. These series involve the Stirling numbers of the first kind and have the property to contain only rational coefficients for certain arguments related to π − 1 . In particular, for any value of the form ln ⁡ Γ ( 1 2 n ± α π − 1 ) and Ψ k ( 1 2 n ± α π − 1 ) , where Ψ k stands for the kth polygamma function, α is positive rational greater than 1 6 π , n is integer and k is non-negative integer, these series have rational terms only. In the specified zones of convergence, derived series converge uniformly at the same rate as ∑ ( n ln m ⁡ n ) − 2 , where m = 1 , 2 , 3 , …  , depending on the order of the polygamma function. Explicit expansions into the series with rational coefficients are given for the most attracting values, such as ln ⁡ Γ ( π − 1 ) , ln ⁡ Γ ( 2 π − 1 ) , ln ⁡ Γ ( 1 2 + π − 1 ) , Ψ ( π − 1 ) , Ψ ( 1 2 + π − 1 ) and Ψ k ( π − 1 ) . Besides, in this article, the reader will also find a number of other series involving Stirling numbers, Gregory's coefficients (logarithmic numbers, also known as Bernoulli numbers of the second kind), Cauchy numbers and generalized Bernoulli numbers. Finally, several estimations and full asymptotics for Gregory's coefficients, for Cauchy numbers, for certain generalized Bernoulli numbers and for certain sums with the Stirling numbers are obtained. In particular, these include sharp bounds for Gregory's coefficients and for the Cauchy numbers of the second kind.

[1]  Александр Николаевич Тимашeв,et al.  Об асимптотических разложениях для чисел Стирлинга первого и второго рода@@@On asymptotic expansions of Stirling numbers of the first and second kinds , 1998 .

[2]  Ladrón de Guevara,et al.  Gompertz Constant, Gregory Coefficients and a Series of the Logarithm Function , 2014 .

[3]  Two Formulas for Successive Derivatives and Their Applications , 2009 .

[4]  Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .

[5]  J. Wrench,et al.  Concerning Two Series for the Gamma Function , 1968 .

[6]  Ibrahim M. Alabdulmohsin Summability Calculus , 2012, 1209.5739.

[7]  C. Malmstén De integralibus quibusdam definits, seriebusque infinitis. , 1849 .

[9]  Compendium der höheren Analysis , 1868 .

[10]  D. A. MacDonald A note on the summation of slowly convergent alternating series , 1996 .

[11]  Gergýo Nemes An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind , 2011 .

[12]  Herman Heine Goldstine,et al.  A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .

[13]  W. Duke,et al.  Special values of multiple gamma functions , 2006 .

[14]  A MATRIX REPRESENTATION FOR EULER'S CONSTANT, GAMMA , 1999 .

[15]  Abraham de Moivre Miscellanea analytica de seriebus et quadraturis. ... , 1970 .

[16]  On Laplace's and Gauss' summation-formulas , 1924 .

[17]  Yu. A. Brychkov,et al.  Integrals and series , 1992 .

[18]  K. Knopp,et al.  Theory and Applications of Infinite Series , 1972 .

[19]  Some theorems on Bernoulli and Euler numbers of higher order , 1954 .

[20]  The Derivatives of Composite Functions , 1943 .

[21]  Richard B. Paris Asymptotic Approximations for n , 2011 .

[22]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[23]  A. Erdélyi,et al.  The asymptotic expansion of a ratio of gamma functions. , 1951 .

[24]  Herbert S. Wilf The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.

[25]  Mark W. Coffey,et al.  Addison-type series representation for the Stieltjes constants , 2009, 0912.2391.

[26]  V. Kowalenko Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion , 2009 .

[27]  A Course of Modern Analysis: An introduction to the General Theory of Infinite Processes and of Analytical Functions; With an Account of the Principal Transcendental Functions , 1916 .

[28]  N. Nielsen,et al.  Handbuch der Theorie der Gammafunktion , 1906 .

[29]  Yu. A. Brychkov,et al.  Power expansions of powers of trigonometric functions and series containing Bernoulli and Euler polynomials , 2009 .

[30]  W. Hayman A Generalisation of Stirling's Formula. , 1956 .

[31]  E. Netto,et al.  Lehrbuch der Combinatorik , 1902 .

[32]  Hsien-Kuei Hwang,et al.  Asymptotic expansions for the Stirling numbers of the first kind , 1995 .

[33]  M. Coffey Certain logarithmic integrals, including solution of Monthly problem #tbd, zeta values, and expressions for the Stieltjes constants , 2012, 1201.3393.

[34]  1. Note on a Formula for Δ n 0 i /n i when n, i are very large Numbers. , 1888 .

[35]  The Collected Mathematical Papers: On a Theorem for the Development of a Factorial , 1853 .

[36]  R. Guy,et al.  The Book of Numbers , 2019, The Crimean Karaim Bible.

[37]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[38]  Dmitry V. Kruchinin,et al.  Composita and its properties , 2011 .

[39]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[40]  Renzo Sprugnoli,et al.  The Cauchy numbers , 2006, Discret. Math..

[41]  Arithmetic properties of Bernoulli numbers of higher order , 1955 .

[42]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[43]  A. Stroud,et al.  Approximate Calculation of Integrals , 1962 .

[44]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[45]  Formulas for factorial $N$ , 1982 .

[46]  N. Ullah On an approximate expression for the energies in the rotation-vibration region , 1981 .

[47]  N. E. Nörlund Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli , 1961 .

[48]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[49]  Guy Louchard Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach , 2010, Discret. Math. Theor. Comput. Sci..

[50]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .

[51]  E. Bender,et al.  Foundations of combinatorics with applications , 1991 .

[52]  J. Stillwell Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.

[53]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[54]  Leonard Carlitz,et al.  Some theorems on Bernoulli numbers of higher order. , 1952 .

[55]  T. A. Bromwich An Introduction To The Theory Of Infinite Series , 1908 .

[56]  Michael O. Rubinstein Identities for the Riemann zeta function , 2008 .

[57]  H. W. Gould An identity involving stirling numbers , 1965 .

[58]  H. T. Davis The Approximation of Logarithmic Numbers , 1957 .

[59]  Paul Thomas Young,et al.  Rational series for multiple zeta and log gamma functions , 2013 .

[60]  Vasile Ion Istrăţescu,et al.  A Collection of Problems , 1987 .

[61]  Mark W. Coffey,et al.  Series representations for the Stieltjes constants , 2009, 0905.1111.

[62]  Iaroslav V. Blagouchine Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only , 2015 .

[63]  Feng-Zhen Zhao Sums of products of Cauchy numbers , 2009, Discret. Math..

[64]  Iaroslav V. Blagouchine A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations , 2014 .

[65]  F. Olver Asymptotics and Special Functions , 1974 .

[66]  S. C. Van Veen Asymptotic Expansion of the Generalized Bernoulli Numbers Bn(n−1) for Large Values of n (n Integer) , 1951 .

[67]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1958 .

[68]  Marc-Antoine Coppo,et al.  A new class of identities involving Cauchy numbers, harmonic numbers and zeta values , 2012 .

[69]  Kruchinin Vladimir Victorovich Composition of ordinary generating functions , 2010, 1009.2565.

[70]  G. Nemes,et al.  Generalization of Binet's Gamma function formulas , 2013 .

[71]  Charles Jordan On Stirling's Numbers , 1933 .

[72]  Paul Thomas Young Congruences for Bernoulli, Euler, and Stirling Numbers , 1999 .

[73]  L. V. Bellavista On the Stirling numbers of the first kind arising from probabilistic and statistical problems , 1983 .

[74]  A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers , 2008 .

[75]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[76]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[77]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[78]  Yu. A. Brychkov On some properties of the generalized Bernoulli and Euler polynomials , 2012 .

[79]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[80]  V. Kowalenko Euler and Divergent Series , 2011 .

[81]  P. Davis Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .

[82]  Feng Qi,et al.  An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind , 2014, 1402.2358.

[83]  Jonathan Sondow Double Integrals for Euler's Constant and In and an Analog of Hadjicostas's Formula , 2005, Am. Math. Mon..

[84]  GergHo Nemes,et al.  On the Coefficients of the Asymptotic Expansion of n , 2010, 1003.2907.

[85]  Arthur Cayley The Collected Mathematical Papers: On some Numerical Expansions , 2009 .

[86]  Cristinel Mortici,et al.  An ultimate extremely accurate formula for approximation of the factorial function , 2009 .

[87]  Masanobu Kaneko,et al.  Bernoulli Numbers and Zeta Functions , 2014 .

[88]  L. Schläfli Ergänzung zu der Abhandlung über die Entwickelung des Products 1.(1+x)(1+2x)(1+3x)...(1+(n-1)x) = (x) in Band XLIII dieses Journals. , 1867 .

[89]  C. Mortici A new fast asymptotic series for the gamma function , 2015 .

[90]  Victor Kowalenko,et al.  Properties and Applications of the Reciprocal Logarithm Numbers , 2010 .

[91]  O. Schlömilch,et al.  Recherches sur les coefficients des facultés analytiques. , 2022 .

[92]  H. W. Gould,et al.  Stirling number representation problems , 1960 .

[93]  L. M. Milne-Thomson,et al.  The Calculus Of Finite Differences , 1934 .

[95]  E. Hansen A Table of Series and Products , 1977 .

[96]  Ken-ichi Sato,et al.  Some Identities Involving Bernoulli and Stirling Numbers , 2001 .

[97]  R. E. Shafer Numerical Evaluation of a Slowly Convergent Series , 1989, SIAM Rev..

[98]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[99]  Theory of Series , 1993 .

[100]  R. Campbell Les Intégrales eulériennes et leurs applications : étude approfondie de la fonction gamma , 1966 .

[101]  Daniel B. Grünberg On Asymptotics, Stirling Numbers, Gamma Function and Polylogs , 2006 .

[102]  Victor S. Adamchik,et al.  On Stirling numbers and Euler sums , 1997 .

[103]  Necdet Batir,et al.  VERY ACCURATE APPROXIMATIONS FOR THE FACTORIAL FUNCTION , 2010 .

[104]  C. Gauss,et al.  DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM , 2011 .

[105]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[106]  Marat Andreevich Evgrafov,et al.  Asymptotic estimates and entire functions , 1961 .

[107]  W. Gautschi Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .

[108]  J. Spouge Computation of the gamma, digamma, and trigamma functions , 1994 .

[109]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[110]  M. Niels Nielsen Recherches sur les polynomes et les nombres de Stirling , 1904 .

[111]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[112]  Arnold Adelberg 2-Adic Congruences of Nörlund Numbers and of Bernoulli Numbers of the Second Kind , 1998 .

[113]  E. Artin Einführung in die Theorie der Gammafunktion , 1931 .

[114]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[115]  N. E. Nörlund Vorlesungen über Differenzenrechnung , 1924 .

[116]  Histoire d'Algorithmes : du caillou à la puce , 1994 .

[117]  Cleve Moler,et al.  Mathematical Handbook for Scientists and Engineers , 1961 .

[118]  Charles Tweedie The Stirling Numbers and Polynomials , 1918 .

[119]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[120]  Iaroslav V. Blagouchine Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results , 2014 .

[121]  M. Rubinstein Identities for the Hurwitz zeta function, Gamma function, and L-functions , 2012, 1206.1992.

[122]  Eric W. Weisstein,et al.  The CRC concise encyclopedia of mathematics , 1999 .

[123]  Li-Chien Shen,et al.  Remarks on some integrals and series involving the Stirling numbers and () , 1995 .

[124]  L. Moser,et al.  Asymptotic Development of the Stirling Numbers of the First Kind , 1958 .

[125]  Donald E. Knuth Two notes on notation , 1992 .

[126]  G. Boole,et al.  Calculus of Finite Differences , 1961 .

[127]  Table of Gregory Coefficients , 1966 .

[128]  G. Pólya,et al.  Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .