Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1
暂无分享,去创建一个
[1] Александр Николаевич Тимашeв,et al. Об асимптотических разложениях для чисел Стирлинга первого и второго рода@@@On asymptotic expansions of Stirling numbers of the first and second kinds , 1998 .
[2] Ladrón de Guevara,et al. Gompertz Constant, Gregory Coefficients and a Series of the Logarithm Function , 2014 .
[3] Two Formulas for Successive Derivatives and Their Applications , 2009 .
[4] Stirling Numbers, Central Factorial Numbers, and Representations of the Riemann Zeta Function , 1991 .
[5] J. Wrench,et al. Concerning Two Series for the Gamma Function , 1968 .
[6] Ibrahim M. Alabdulmohsin. Summability Calculus , 2012, 1209.5739.
[7] C. Malmstén. De integralibus quibusdam definits, seriebusque infinitis. , 1849 .
[9] Compendium der höheren Analysis , 1868 .
[10] D. A. MacDonald. A note on the summation of slowly convergent alternating series , 1996 .
[11] Gergýo Nemes. An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind , 2011 .
[12] Herman Heine Goldstine,et al. A History of Numerical Analysis from the 16th through the 19th Century. , 1976 .
[13] W. Duke,et al. Special values of multiple gamma functions , 2006 .
[14] A MATRIX REPRESENTATION FOR EULER'S CONSTANT, GAMMA , 1999 .
[15] Abraham de Moivre. Miscellanea analytica de seriebus et quadraturis. ... , 1970 .
[16] On Laplace's and Gauss' summation-formulas , 1924 .
[17] Yu. A. Brychkov,et al. Integrals and series , 1992 .
[18] K. Knopp,et al. Theory and Applications of Infinite Series , 1972 .
[19] Some theorems on Bernoulli and Euler numbers of higher order , 1954 .
[20] The Derivatives of Composite Functions , 1943 .
[21] Richard B. Paris. Asymptotic Approximations for n , 2011 .
[22] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[23] A. Erdélyi,et al. The asymptotic expansion of a ratio of gamma functions. , 1951 .
[24] Herbert S. Wilf. The Asymptotic Behavior of the Stirling Numbers of the First Kind , 1993, J. Comb. Theory, Ser. A.
[25] Mark W. Coffey,et al. Addison-type series representation for the Stieltjes constants , 2009, 0912.2391.
[26] V. Kowalenko. Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion , 2009 .
[28] N. Nielsen,et al. Handbuch der Theorie der Gammafunktion , 1906 .
[29] Yu. A. Brychkov,et al. Power expansions of powers of trigonometric functions and series containing Bernoulli and Euler polynomials , 2009 .
[30] W. Hayman. A Generalisation of Stirling's Formula. , 1956 .
[31] E. Netto,et al. Lehrbuch der Combinatorik , 1902 .
[32] Hsien-Kuei Hwang,et al. Asymptotic expansions for the Stirling numbers of the first kind , 1995 .
[33] M. Coffey. Certain logarithmic integrals, including solution of Monthly problem #tbd, zeta values, and expressions for the Stieltjes constants , 2012, 1201.3393.
[34] 1. Note on a Formula for Δ n 0 i /n i when n, i are very large Numbers. , 1888 .
[35] The Collected Mathematical Papers: On a Theorem for the Development of a Factorial , 1853 .
[36] R. Guy,et al. The Book of Numbers , 2019, The Crimean Karaim Bible.
[37] Ronald L. Graham,et al. Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.
[38] Dmitry V. Kruchinin,et al. Composita and its properties , 2011 .
[39] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[40] Renzo Sprugnoli,et al. The Cauchy numbers , 2006, Discret. Math..
[41] Arithmetic properties of Bernoulli numbers of higher order , 1955 .
[42] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[43] A. Stroud,et al. Approximate Calculation of Integrals , 1962 .
[44] Hari M. Srivastava,et al. Series Associated with the Zeta and Related Functions , 2001 .
[45] Formulas for factorial $N$ , 1982 .
[46] N. Ullah. On an approximate expression for the energies in the rotation-vibration region , 1981 .
[47] N. E. Nörlund. Sur les valeurs asymptotiques des nombres et des polynômes de Bernoulli , 1961 .
[48] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[49] Guy Louchard. Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach , 2010, Discret. Math. Theor. Comput. Sci..
[50] Granino A. Korn,et al. Mathematical handbook for scientists and engineers. Definitions, theorems, and formulas for reference and review , 1968 .
[51] E. Bender,et al. Foundations of combinatorics with applications , 1991 .
[52] J. Stillwell. Mathematics and Its History , 2020, Undergraduate Texts in Mathematics.
[53] John Riordan,et al. Introduction to Combinatorial Analysis , 1959 .
[54] Leonard Carlitz,et al. Some theorems on Bernoulli numbers of higher order. , 1952 .
[55] T. A. Bromwich. An Introduction To The Theory Of Infinite Series , 1908 .
[56] Michael O. Rubinstein. Identities for the Riemann zeta function , 2008 .
[57] H. W. Gould. An identity involving stirling numbers , 1965 .
[58] H. T. Davis. The Approximation of Logarithmic Numbers , 1957 .
[59] Paul Thomas Young,et al. Rational series for multiple zeta and log gamma functions , 2013 .
[60] Vasile Ion Istrăţescu,et al. A Collection of Problems , 1987 .
[61] Mark W. Coffey,et al. Series representations for the Stieltjes constants , 2009, 0905.1111.
[62] Iaroslav V. Blagouchine. Expansions of generalized Euler's constants into the series of polynomials in π−2 and into the formal enveloping series with rational coefficients only , 2015 .
[63] Feng-Zhen Zhao. Sums of products of Cauchy numbers , 2009, Discret. Math..
[64] Iaroslav V. Blagouchine. A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments and some related summations , 2014 .
[65] F. Olver. Asymptotics and Special Functions , 1974 .
[66] S. C. Van Veen. Asymptotic Expansion of the Generalized Bernoulli Numbers Bn(n−1) for Large Values of n (n Integer) , 1951 .
[67] John Riordan,et al. Introduction to Combinatorial Analysis , 1958 .
[68] Marc-Antoine Coppo,et al. A new class of identities involving Cauchy numbers, harmonic numbers and zeta values , 2012 .
[69] Kruchinin Vladimir Victorovich. Composition of ordinary generating functions , 2010, 1009.2565.
[70] G. Nemes,et al. Generalization of Binet's Gamma function formulas , 2013 .
[71] Charles Jordan. On Stirling's Numbers , 1933 .
[72] Paul Thomas Young. Congruences for Bernoulli, Euler, and Stirling Numbers , 1999 .
[73] L. V. Bellavista. On the Stirling numbers of the first kind arising from probabilistic and statistical problems , 1983 .
[74] A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers , 2008 .
[75] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[76] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .
[77] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[78] Yu. A. Brychkov. On some properties of the generalized Bernoulli and Euler polynomials , 2012 .
[79] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[80] V. Kowalenko. Euler and Divergent Series , 2011 .
[81] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[82] Feng Qi,et al. An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind , 2014, 1402.2358.
[83] Jonathan Sondow. Double Integrals for Euler's Constant and In and an Analog of Hadjicostas's Formula , 2005, Am. Math. Mon..
[84] GergHo Nemes,et al. On the Coefficients of the Asymptotic Expansion of n , 2010, 1003.2907.
[85] Arthur Cayley. The Collected Mathematical Papers: On some Numerical Expansions , 2009 .
[86] Cristinel Mortici,et al. An ultimate extremely accurate formula for approximation of the factorial function , 2009 .
[87] Masanobu Kaneko,et al. Bernoulli Numbers and Zeta Functions , 2014 .
[88] L. Schläfli. Ergänzung zu der Abhandlung über die Entwickelung des Products 1.(1+x)(1+2x)(1+3x)...(1+(n-1)x) = (x) in Band XLIII dieses Journals. , 1867 .
[89] C. Mortici. A new fast asymptotic series for the gamma function , 2015 .
[90] Victor Kowalenko,et al. Properties and Applications of the Reciprocal Logarithm Numbers , 2010 .
[91] O. Schlömilch,et al. Recherches sur les coefficients des facultés analytiques. , 2022 .
[92] H. W. Gould,et al. Stirling number representation problems , 1960 .
[93] L. M. Milne-Thomson,et al. The Calculus Of Finite Differences , 1934 .
[95] E. Hansen. A Table of Series and Products , 1977 .
[96] Ken-ichi Sato,et al. Some Identities Involving Bernoulli and Stirling Numbers , 2001 .
[97] R. E. Shafer. Numerical Evaluation of a Slowly Convergent Series , 1989, SIAM Rev..
[98] E. N.,et al. The Calculus of Finite Differences , 1934, Nature.
[99] Theory of Series , 1993 .
[100] R. Campbell. Les Intégrales eulériennes et leurs applications : étude approfondie de la fonction gamma , 1966 .
[101] Daniel B. Grünberg. On Asymptotics, Stirling Numbers, Gamma Function and Polylogs , 2006 .
[102] Victor S. Adamchik,et al. On Stirling numbers and Euler sums , 1997 .
[103] Necdet Batir,et al. VERY ACCURATE APPROXIMATIONS FOR THE FACTORIAL FUNCTION , 2010 .
[104] C. Gauss,et al. DISQUISITIONES GENERALES CIRCA SERIEM INFINITAM , 2011 .
[105] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[106] Marat Andreevich Evgrafov,et al. Asymptotic estimates and entire functions , 1961 .
[107] W. Gautschi. Some Elementary Inequalities Relating to the Gamma and Incomplete Gamma Function , 1959 .
[108] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[109] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[110] M. Niels Nielsen. Recherches sur les polynomes et les nombres de Stirling , 1904 .
[111] Nico M. Temme,et al. Asymptotic estimates of Stirling numbers , 1993 .
[112] Arnold Adelberg. 2-Adic Congruences of Nörlund Numbers and of Bernoulli Numbers of the Second Kind , 1998 .
[113] E. Artin. Einführung in die Theorie der Gammafunktion , 1931 .
[114] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[115] N. E. Nörlund. Vorlesungen über Differenzenrechnung , 1924 .
[116] Histoire d'Algorithmes : du caillou à la puce , 1994 .
[117] Cleve Moler,et al. Mathematical Handbook for Scientists and Engineers , 1961 .
[118] Charles Tweedie. The Stirling Numbers and Polynomials , 1918 .
[119] Philip M. Morse,et al. Methods of Mathematical Physics , 1947, The Mathematical Gazette.
[120] Iaroslav V. Blagouchine. Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results , 2014 .
[121] M. Rubinstein. Identities for the Hurwitz zeta function, Gamma function, and L-functions , 2012, 1206.1992.
[122] Eric W. Weisstein,et al. The CRC concise encyclopedia of mathematics , 1999 .
[123] Li-Chien Shen,et al. Remarks on some integrals and series involving the Stirling numbers and () , 1995 .
[124] L. Moser,et al. Asymptotic Development of the Stirling Numbers of the First Kind , 1958 .
[125] Donald E. Knuth. Two notes on notation , 1992 .
[126] G. Boole,et al. Calculus of Finite Differences , 1961 .
[127] Table of Gregory Coefficients , 1966 .
[128] G. Pólya,et al. Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .