Exploitation of modularity in the JET tokamak vertical stabilization system

Abstract The vertical stabilization system of the JET tokamak has been recently upgraded. This new system enables a more sensitive control of the plasma geometry and can withstand larger perturbations, enabling to push the plasma performance to its limits without risking a severe control loss, which might endanger the machine integrity. The project was successfully delivered in the course of 2009. This paper introduces the architecture of the new JET vertical stabilization system, discussing how its modularity enabled the system to provide different experimental features in several operational environments. Furthermore, some of the major achievements of the commissioning activity and of the regular operation during the 2008/2009 experimental campaigns are presented.

[1]  Stephen C. Jardin,et al.  Feedback stabilization of rigid axisymmetric modes in tokamaks , 1982 .

[2]  L. L. Lao,et al.  Edge localized mode physics and operational aspects in tokamaks , 2003 .

[3]  A. Portone,et al.  Vertical stabilisation of Tokamak plasmas , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[4]  Filippo Sartori,et al.  Plasma vertical stabilisation at JET using adaptive gain adjustment , 1997, 17th IEEE/NPSS Symposium Fusion Engineering (Cat. No.97CH36131).

[5]  Luca Zaccarian,et al.  Performance assessment of a dynamic current allocator for the JET eXtreme Shape Controller , 2011 .

[6]  Parag Vyas,et al.  VERTICAL POSITION CONTROL ON COMPASS-D , 1998 .

[7]  Alfredo Pironti,et al.  A flexible software for real-time control in nuclear fusion experiments , 2006 .

[8]  P. J. Lomas,et al.  n=2 Compensation and variable gains for JET vertical stabilisation , 2003 .

[9]  Y. Gribov,et al.  Plasma control in ITER , 2006, IEEE Control Systems.

[10]  P. J. Lomas,et al.  Control of Elongated Plasma in Presence of ELMs in the JET Tokamak , 2011, IEEE Transactions on Nuclear Science.

[11]  Raffaele Albanese,et al.  An Alternative Controlled Variable for JET Vertical Stabilization , 2011 .

[12]  T Bellizio,et al.  The Software Architecture of the New Vertical-Stabilization System for the JET Tokamak , 2010, IEEE Transactions on Plasma Science.

[13]  Massimiliano Mattei,et al.  Plasma Response Models for Current, Shape and Position Control in Jet , 2003 .

[14]  P. McCullen,et al.  SHAPE CONTROLLER UPGRADES FOR THE JET ITER-LIKE WALL , 2011 .

[15]  Luca Zaccarian,et al.  Nonlinear dynamic allocator for optimal input/output performance trade-off: Application to the JET tokamak shape controller , 2011, Autom..

[16]  Antonio Barbalace,et al.  MARTe: A Multiplatform Real-Time Framework , 2010, IEEE Transactions on Nuclear Science.

[17]  Gianmaria De Tommasi,et al.  First plasma operation of the enhanced JET vertical stabilisation system , 2011 .

[18]  Alfredo Pironti,et al.  Current, Position, and Shape Control in Tokamaks , 2011 .

[19]  Filippo Sartori,et al.  Plasma control at JET , 2000 .

[20]  R. Albanese,et al.  The linearized CREATE-L plasma response model for the control of current, position and shape in tokamaks , 1998 .

[21]  Alfredo Pironti,et al.  Magnetic Control of Tokamak Plasmas , 2008 .

[22]  Satoshi Itoh,et al.  Analysis of Optimal Feedback Control of Vertical Plasma Position in a Tokamak System , 1985 .

[23]  Filippo Sartori,et al.  The PCU JET Plasma Vertical Stabilization control system , 2010 .

[24]  R. Felton,et al.  Real-Time Systems in Tokamak Devices. A Case Study: The JET Tokamak , 2010, IEEE Transactions on Nuclear Science.

[25]  David A. Humphreys,et al.  On feedback stabilization of the tokamak plasma vertical instability , 2009, Autom..

[26]  Douglas P. Looze Franklin, Powell and Emami-Naeini, Feedback Control of Dynamic Systems, 6 th Edition, Prentice-Hall, 2010. (referred to as FPE) References: Ogata, Modern Control Engineering, Prentice-Hall, 2009. Dorf, Modern Control Systems, Prentice-Hall, 2008. , 2013 .

[27]  Alfredo Portone,et al.  Overview of modelling activities for Plasma Control Upgrade in JET , 2011 .

[28]  F. Sartori,et al.  The Joint European Torus , 2006, IEEE Control Systems.

[29]  M. Ariola,et al.  Plasma shape control for the JET tokamak: an optimal output regulation approach , 2005, IEEE Control Systems.

[30]  E. Solano,et al.  Magnetic ELM triggering using the vertical stabilization controller in JET , 2009 .

[31]  D. J. Campbell,et al.  First Operational Experience with the new Plasma Position and Current Control System of JET , 1995 .

[32]  Massimiliano Mattei,et al.  Design, implementation and test of the XSC extreme shape controller in JET , 2005 .

[33]  Miroslav Krstic,et al.  Plasma vertical stabilization with actuation constraints in the DIII-D tokamak , 2005, Autom..

[34]  Gianmaria De Tommasi,et al.  Plasma Vertical Stabilization in the ITER Tokamak via Constrained Static Output Feedback , 2011, IEEE Transactions on Control Systems Technology.

[35]  E. Villedieu,et al.  Overview of the ITER-like wall project , 2007 .

[36]  V. Toigo,et al.  Conceptual design of the enhanced radial field amplifier for plasma vertical stabilisation in JET , 2007 .

[37]  C.A.F. Varandas,et al.  ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks , 2006 .

[38]  G. De Tommasi,et al.  A Survey of Recent MARTe Based Systems , 2010, IEEE Transactions on Nuclear Science.

[39]  G. F. Matthews,et al.  An ITER-like wall for JET , 2007 .

[40]  P. C. de Vries,et al.  Analysis of JET halo currents , 2004 .

[41]  Basil Kouvaritakis,et al.  A discrete adaptive near-time optimum control for the plasma vertical position in a Tokamak , 2001, IEEE Trans. Control. Syst. Technol..

[42]  A. Pironti,et al.  Fusion, tokamaks, and plasma control: an introduction and tutorial , 2005, IEEE Control Systems.

[43]  David Allan Humphreys,et al.  Chapter 8: Plasma operation and control , 2007 .

[44]  R. Vitelli,et al.  Linux real-time framework for fusion devices , 2009 .

[45]  Basil Kouvaritakis,et al.  Application of cautious stable predictive control to vertical positioning in COMPASS-D tokamak , 1999, IEEE Trans. Control. Syst. Technol..