A Characterization of the Normal Distribution by the Independence of a Pair of Random Vectors

Kagan and Shalaevski (1967) have shown that if the random variables X1,…,Xn are i.i.d. and the distribution of ∑i=1n(Xi+ai)2ai∈R depends only on ∑i=1nai2, then each Xi∼N(0,σ). In this paper, we will give other characterizations of the normal distribution which are formulated in a similar spirit.

[1]  J. Wesołowski,et al.  Dual Lukacs regressions for non-commutative variables , 2011, 1110.3419.

[2]  The free analogue of noncentral chi-square distributions and symmetric quadratic forms in free random variables , 1999 .

[3]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[4]  K. Chung,et al.  Limit Distributions for Sums of Independent Random Variables. , 1955 .

[5]  Ivan Nourdin,et al.  Wigner chaos and the fourth moment , 2010, 1009.3949.

[6]  A characterization of probability distributions by moments of sums of independent random variables , 1994 .

[7]  F. Lehner Cumulants in noncommutative probability theory II , 2003 .

[8]  Rory A. Fisher,et al.  Moments and Product Moments of Sampling Distributions , 1930 .

[9]  Wiktor Ejsmont Laha-Lukacs properties of some free processes , 2012 .

[10]  Cumulants in noncommutative probability theory I. Noncommutative exchangeability systems , 2002, math/0210442.

[11]  P. Spreij Probability and Measure , 1996 .

[12]  On a class of free Lévy laws related to a regression problem , 2004, math/0410601.

[13]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[14]  Gian-Carlo Rota,et al.  On the Combinatorics of Cumulants , 2000, J. Comb. Theory, Ser. A.

[15]  W. Bryc The Normal Distribution: Characterizations with Applications , 1995 .

[16]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .

[17]  C. Geiss,et al.  An introduction to probability theory , 2008 .