Interactive direct volume rendering of curvilinear and unstructured data

Methods for interactive volume rendering of nonrectilinear 3D scientific data sets, such as those generated by the finite element method, are investigated. We focus on the use of projection methods, in particular splatting algorithms, for volume rendering curvilinear and irregular data. The data is rendered without interpolating it to a rectilinear mesh. The goal is interactive performance even when the data sets are very large. To achieve this, we investigate parallelization, graphics hardware support, a suite of splatting approximations, and mesh filtration. Using these techniques, we have generated images of nonrectilinear data sets with over 1,000,000 cells interactively (in less than 15-30 seconds). Using filtering methods this performance is possible for even larger data sets. Various optical models are discussed as a theoretical basis for volume rendering. A new theoretical model for interactive volume rendering is introduced. An algorithm is presented that generates a visibility ordering of an acyclic convex set of meshed convex polyhedra. This algorithm takes time linear in the size of the mesh. Modifications to this algorithm and/or preprocessing techniques are described which permit nonconvex cells, nonconvex meshes (meshes with cavities and/or voids), meshes with cycles, and sets of disconnected meshes to be ordered. It is shown how the ordering algorithms can be used for domain decomposition of finite element meshes for parallel processing, and how the data structures used by these algorithms can be used to solve the spatial point location problem. The effects of cyclically obstructing polyhedra are discussed, and methods for their elimination are described,including the use of the Delaunay triangulation. Methods for converting nonconvex meshes into convex meshes are described. A suite of splatting approximations are presented, which along with other more accurate methods discussed, form a hierarchy of rendering methods that tradeoff image accuracy/quality and generation time. Parallel volume rendering algorithms that include visibility ordering for both convex and nonconvex irregular meshes are investigated and results are given for several versions of parallel algorithms. A performance analysis of one of these algorithms on a high performance MIMD 3D graphics workstation is presented.

Peter Williams | G. Cybenko | D. Mavriplis | P. Williams | F. Juang | V. Argiro | Kelvin Sung | S. Balachandar | Mark Bajuk | L. V. Kale | William Kubitz | David Kuck | Donna Cox | Melanie Loots | Nelson L. Max | Peter Shirley | Kyle Gallivan | Cathy Warmbier | Randall Bramley | Parris Egbert | Ray Idaszak | Mike Krogh | Mat Arrott | Bill Sherman | Gautam Mehrotra | Mark Washburn | Tiow-Seng Tan | Tony Baylis | R. Flight | Dennis Parsons | Charles Tucker | Bob Haber | Kurt Larson | Terri Stewart | Mike McNeill | Amy Swanson | Don Hearn | Joyce Woodworth | Uday Reddy | Carol Song | Chris Song | Dan Brady | Amhed Sameh | Dave Semarero | Linda Ashby | Lou Wicker | Paul Saylor | Michael Heath | John Gray | Tim Baker | Sia Meshkat | Marshall Merriam | B. Nitrosso | Tracy Williams | Sharon Rose Fisher | Chris Wagner | Mike Chapman | Peter L. Williams | L. V. Kale | William Kubitz | David Kuck | Donna Cox | Melanie Loots | Nelson Max | Peter Shirley | Kyle Gallivan | Cathy Warmbier | Randall Bramley | Kelvin Sung | Ray Idaszak | Mike Krogh | Mat Arrott | Bill Sherman | Gautam Mehrotra | Mark Washburn | Tiow-Seng Tan | Tony Baylis | R. Flight | Dennis Parsons | Charles Tucker | Bob Haber | Kurt Larson | Terri Stewart | Mike McNeill | Amy Swanson | Don Hearn | Joyce Woodworth | Uday Reddy | Carol Song | Chris Song | Dan Brady | A. Sameh | Dave Semarero | S. Balachandar | Linda Ashby | Lou Wicker | Paul Saylor | Michael Heath | John Gray | Tim Baker | Marshall Merriam | Tracy Williams | Sharon Rose Fisher | Chris Wagner | Mike Chapman

[1]  Gary L. Miller,et al.  An Improved Parallel Algorithm that Computes the BFS Numbering of a Directed Graph , 1988, Information Processing Letters.

[2]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[3]  R. Morison,et al.  The scattered decomposition for finite elements , 1987 .

[4]  Derek G. Corneil,et al.  Parallel computations in graph theory , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[5]  M. Maxey,et al.  Methods for evaluating fluid velocities in spectral simulations of turbulence , 1989 .

[6]  Fox,et al.  Load balancing and sparse matrix vector multiplication on the hypercube , 1986 .

[7]  Timothy J. Baker,et al.  Three dimensional mesh generation by triangulation of arbitrary point sets , 1987 .

[8]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[9]  Kevin L. Novins,et al.  An efficient method for volume rendering using perspective projection , 1990, SIGGRAPH 1990.

[10]  James F. Blinn,et al.  Light reflection functions for simulation of clouds and dusty surfaces , 1982, SIGGRAPH.

[11]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[12]  Allan Tuchman,et al.  Fast volume rendering with embedded geometric primitives , 1992 .

[13]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[14]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[15]  S. Rogers,et al.  A numerical study of three-dimensional incompressible flow around multiple posts , 1986 .

[16]  F. Frances Yao,et al.  Binary partitions with applications to hidden surface removal and solid modelling , 1989, SCG '89.

[17]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[18]  W. Hibbard,et al.  Interactivity is the key , 1989, VVS '89.

[19]  J. Challinger,et al.  Direct volume rendering of curvilinear volumes , 1990, VVS.

[20]  Ray J. Meyers,et al.  Ray traced scalar fields with shaded polygonal output , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[21]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[22]  Nelson Max,et al.  Light diffusion through clouds and haze , 1986, Comput. Vis. Graph. Image Process..

[23]  Wolfgang Fichtner,et al.  A Set of New Mapping and Coloring Heuristics for Distributed-Memory Parallel Processors , 1992, SIAM J. Sci. Comput..

[24]  Charbel Farhat,et al.  A simple and efficient automatic fem domain decomposer , 1988 .

[25]  Jane Wilhelms,et al.  A coherent projection approach for direct volume rendering , 1991, SIGGRAPH.

[26]  Stephen Kennon A vectorized Delaunay triangulation scheme for non-convex domains with automatic nodal point generation , 1988 .

[27]  Harald Rosenberger Degeneracy control in geometric programs , 1990 .

[28]  Brian Wyvill,et al.  Parallel Volume Rendering on a Shared-Memory Multiprocessor , 1992 .

[29]  Michael J. Laszlo Techniques for visualizing 3-dimensional manifolds , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[30]  Rossella Petreschi,et al.  Parallel-Depth Search for Acyclic Digraphs , 1989, J. Parallel Distributed Comput..

[31]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[32]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes ind dimension , 1990, Comb..

[33]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[34]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[35]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[36]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[37]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[38]  John H. Reif,et al.  Depth-First Search is Inherently Sequential , 1985, Inf. Process. Lett..

[39]  Nelson L. Max,et al.  Atmospheric illumination and shadows , 1986, SIGGRAPH.

[40]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[41]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[42]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[43]  Bruce Lucas,et al.  A data model for scientific visualization with provisions for regular and irregular grids , 1991, Proceeding Visualization '91.

[44]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[45]  Christopher Giertsen,et al.  Volume visualization of sparse irregular meshes , 1992, IEEE Computer Graphics and Applications.

[46]  Bernard Chazelle,et al.  How to Search in History , 1983, Inf. Control..

[47]  Steve W. Otto,et al.  Optimal mapping of irregular finite element domains to parallel processors , 1987 .

[48]  T. Baker Shape reconstruction and volume meshing for complex solids , 1991 .

[49]  David S. Ebert,et al.  Rendering and animation of gaseous phenomena by combining fast volume and scanline A-buffer techniques , 1990, SIGGRAPH.

[50]  Charbel Farhat On the mapping of massively parallel processors onto finite element graphs , 1989 .

[51]  Robert Schreiber,et al.  Mapping unstructured grid problems to the connection machine , 1992 .

[52]  Bernard Chazelle,et al.  Triangulating a nonconvex polytope , 1990, Discret. Comput. Geom..

[53]  G Russell,et al.  Display and perception of 3-D space-filling data. , 1987, Applied optics.

[54]  Chris Goad,et al.  Special purpose automatic programming for hidden surface elimination , 1982, SIGGRAPH.

[55]  Wolfgang Krüger The application of transport theory to visualization of 3D scalar data fields , 1990, VIS '90.

[56]  Michael J. Quinn,et al.  Parallel graph algorithms , 1984, CSUR.

[57]  Lee Westover,et al.  Interactive volume rendering , 1989, VVS '89.

[58]  J. Challinger,et al.  Parallel volume rendering for curvilinear volumes , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[59]  Dan Gordon,et al.  Back-to-Front Display of Voxel Based Objects , 1985, IEEE Computer Graphics and Applications.

[60]  Roberto Tamassia,et al.  Efficient Point Location in a Convex Spatial Cell-Complex , 1989, SIAM J. Comput..

[61]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[62]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[63]  P. Sadayappan,et al.  Nearest-Neighbor Mapping of Finite Element Graphs onto Processor Meshes , 1987, IEEE Transactions on Computers.

[64]  Elias N. Houstis,et al.  DOMAIN DECOMPOSER: A Software Tool for Mapping PDE Computations to Parallel Architectures , 1990 .

[65]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[66]  Thomas Ertl,et al.  Line-of-sight integration: A powerful tool for visualization of three-dimensional scalar fields , 1989, Comput. Graph..

[67]  Koji Koyamada,et al.  Volume visualization for the unstructured grid data , 1990, Other Conferences.

[68]  D. Speray,et al.  Volume probes: interactive data exploration on arbitrary grids , 1990 .

[69]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[70]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[71]  Christopher Giertsen,et al.  Creative parameter selection for volume visualization , 1992, Comput. Animat. Virtual Worlds.

[72]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[73]  Craig Upson,et al.  V-buffer: visible volume rendering , 1988, SIGGRAPH.

[74]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[75]  Loren C. Carpenter,et al.  The A -buffer, an antialiased hidden surface method , 1984, SIGGRAPH.

[76]  Herbert Edelsbrunner,et al.  Tetrahedrizing Point Sets in Three Dimensions , 1988, ISSAC.

[77]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.