Deep Learning Based Pipeline for Fingerprinting Using Brain Functional MRI Connectivity Data

[1]  John G. Kirkwood SECTION OF PHYSICS AND CHEMISTRY: THE FRACTIONATION OF THE SERUM PROTEIN BY ELECTROPHORESIS‐CONVECTION* , 1952 .

[2]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[4]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[5]  Guido Rossum,et al.  Python Reference Manual , 2000 .

[6]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[7]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[8]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[9]  Matthew A. Lockhart Introduction to a Special Double Issue , 2005 .

[10]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[11]  Tor D. Wager,et al.  Introduction to a Special Issue of Neuroimage on Brain–Body Medicine , 2009, NeuroImage.

[12]  P. Bandettini,et al.  What's New in Neuroimaging Methods? , 2009, Annals of the New York Academy of Sciences.

[13]  Yongyi Yang,et al.  Machine Learning in Medical Imaging , 2010, IEEE Signal Processing Magazine.

[14]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[15]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[16]  Xenophon Papademetris,et al.  Groupwise whole-brain parcellation from resting-state fMRI data for network node identification , 2013, NeuroImage.

[17]  Rajesh K. Kana,et al.  The Implications of Brain Connectivity in the Neuropsychology of Autism , 2014, Neuropsychology Review.

[18]  Emily L. Dennis,et al.  Functional Brain Connectivity Using fMRI in Aging and Alzheimer’s Disease , 2014, Neuropsychology Review.

[19]  Cengiz Günay,et al.  Classification of Resting State fMRI Datasets Using Dynamic Network Clusters , 2014, AAAI Workshop: Modern Artificial Intelligence for Health Analytics.

[20]  Victor Alves,et al.  The Impact of Normalization and Segmentation on Resting-State Brain Networks , 2015, Brain Connect..

[21]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[22]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[23]  Ronald M. Summers,et al.  Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique , 2016 .

[24]  Guoqing Wang,et al.  Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data , 2016, Interdisciplinary Sciences: Computational Life Sciences.

[25]  Joseph V. Hajnal,et al.  Machine-learning to characterise neonatal functional connectivity in the preterm brain , 2016, NeuroImage.

[26]  Kristin Prehn,et al.  Moral competence and brain connectivity: A resting-state fMRI study , 2016, NeuroImage.

[27]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[28]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[29]  Weidong Cai,et al.  Machine Learning in Multimodal Medical Imaging , 2017, BioMed research international.