Dehydration of ionized propanol in the gas phase

[1]  Leo Radom,et al.  An assessment of theoretical procedures for the calculation of reliable free radical thermochemistry: A recommended new procedure , 1998 .

[2]  L. Radom,et al.  Accurate theoretical structures of radical cations containing unusually long bonds: the structures of CH3CH2OH.+, ĊH2CH2O+H2 , 1997 .

[3]  Leo Radom,et al.  Gaussian‐2 (G2) theory: Reduced basis set requirements , 1996 .

[4]  A. Skancke Conversion of Cyclopropane Radical Cation to Propene Radical Cation , 1995 .

[5]  Leo Radom,et al.  CALCULATION OF PROTON AFFINITIES USING THE G2(MP2,SVP) PROCEDURE , 1995 .

[6]  Krishnan Raghavachari,et al.  Gaussian-2 theory using reduced Moller--Plesset orders , 1993 .

[7]  H. Kenttämaa,et al.  Ion-molecule reactions of distonic radical cations , 1992 .

[8]  T. Baer,et al.  Dissociation dynamics of energy selected propanol ions from a .sigma.-type ion structure , 1992 .

[9]  T. Baer,et al.  Ab initio molecular orbital study of 1-propanol(1+) ions , 1992 .

[10]  R. Bateman,et al.  Applications in gaseous ion and neutral chemistry using a six-sector mass spectrometer , 1992 .

[11]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[12]  R. Bowen,et al.  REACTIONS OF IONIZED N-PROPAN-1-OL IN THE GAS PHASE , 1991 .

[13]  V. Wysocki,et al.  Collisional activation of distonic radical cations and their conventional isomers in quadrupole tandem mass spectrometry , 1990 .

[14]  J. C. Morrow,et al.  The dissociation dynamics of energy selected ion–dipole complexes. I. The cyclopropane ion–water complex [c‐C3H+6–OH2] , 1987 .

[15]  F. McLafferty,et al.  Distonic oxonium and ammonium radical cations. A neutralization-reionization and collisional activation study , 1985 .

[16]  T. Takeuchi,et al.  Theoretical study of electron impact mass spectrometry. II. ab initio MO study of the fragmentation of ionized 1-propanol , 1985 .

[17]  H. Schwarz,et al.  Reactivity of CH2XCH 3⊕⊙ (X Cl, Br) with Electrophiles and Nucleophiles in the Gas Phase, a Fourier Transform Ion Cyclotron Resonance Investigation , 1984 .

[18]  P. Burgers,et al.  Charge stripping mass spectra: A method for identifying isomeric [C5H8]+˙ and [C3H6]+˙ ions , 1980 .

[19]  Terry Beyer,et al.  Algorithm 448: number of multiply-restricted partitions , 1973, CACM.

[20]  S. Stein,et al.  Accurate evaluation of internal energy level sums and densities including anharmonic oscillators and hindered rotors , 1973 .

[21]  F. McLafferty,et al.  Identification of C3H6.+ structural isomers by ion cyclotron resonance spectroscopy , 1971 .

[22]  C. Ng,et al.  The structure, energetics and dynamics of organic ions , 1996 .

[23]  R. Flammang,et al.  A new hybrid mass spectrometer for the investigation of ion/molecule reactions , 1995 .

[24]  L. Radom,et al.  Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6–31G* and MP2/6–31G* Harmonic Frequencies , 1993 .

[25]  J. Szulejko,et al.  Two new stable[C3H8O]+˙ isomers: the radical cations [C3H6OH2]+˙ , 1984 .

[26]  Michael L. Gross,et al.  A field ionization and collisionally activated dissociation/charge stripping study of some [C9H10]+˙ ions , 1983 .