Multi-scale approach to hydrogen diffusion in FCC polycrystalline structure with binary classification of grain boundaries in continuum model

[1]  A. Galdikas,et al.  Kinetic Modeling of Grain Boundary Diffusion: Typical, Bi-Modal, and Semi-Lamellar Polycrystalline Coating Morphologies , 2022, Coatings.

[2]  X. Feaugas,et al.  Antagonist effects of grain boundaries between the trapping process and the fast diffusion path in nickel bicrystals , 2021, Scientific Reports.

[3]  A. Galdikas,et al.  Kinetic Modeling of Grain Boundary Diffusion: The Influence of Grain Size and Surface Processes , 2020, Materials.

[4]  I. I. Cuesta,et al.  Analysis of hydrogen permeation tests considering two different modelling approaches for grain boundary trapping in iron , 2019, International Journal of Fracture.

[5]  Isabelle Aubert,et al.  Local-scale Modeling of Plasticity–Environment Interactions , 2019, Mechanics - Microstructure - Corrosion Coupling.

[6]  Wen-qing Liu,et al.  Effects of the triple junction types on the grain boundary carbide precipitation in a nickel-based superalloy, a statistical analysis , 2018, Philosophical Magazine.

[7]  I. Sevostianov,et al.  On the micromechanical modelling of the effective diffusion coefficient of a polycrystalline material , 2015 .

[8]  X. Feaugas,et al.  Effects of grain-boundary networks on the macroscopic diffusivity of hydrogen in polycrystalline materials , 2015 .

[9]  G. Kermouche,et al.  Finite element analysis of the grain size effect on diffusion in polycrystalline materials , 2014 .

[10]  D. Morgan,et al.  Kinetic Monte Carlo simulation of the effective diffusivity in grain boundary networks , 2014 .

[11]  Sharniece Holland,et al.  Grain boundary diffusion: non-random topology and effective medium approximation , 2014 .

[12]  T. N. Croft,et al.  Finite element microstructural homogenization techniques and intergranular, intragranular microstructural effects on effective diffusion coefficient of heterogeneous polycrystalline composite media , 2014 .

[13]  T. N. Croft,et al.  Influence of grain boundary misorientation on hydrogen embrittlement in bi-crystal nickel , 2014 .

[14]  M. Khaleel,et al.  Numerical analysis of the influence of scale effects and microstructure on hydrogen diffusion in polycrystalline aggregates , 2013 .

[15]  I. Benedetti Modelling Polycrystalline Materials: An Overview of Three-Dimensional Grain-Scale Mechanical Models , 2013 .

[16]  M. Tschopp,et al.  Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in α-Fe , 2013, Metallurgical and Materials Transactions A.

[17]  J. Bouhattate,et al.  Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel , 2012 .

[18]  J. Bouhattate,et al.  The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel , 2012 .

[19]  H. Maier,et al.  Grain boundary characterization and energetics of superalloys , 2010 .

[20]  X. Feaugas,et al.  Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test , 2010 .

[21]  M. Ortiz,et al.  A three-dimensional multiscale model of intergranular hydrogen-assisted cracking , 2010 .

[22]  C. Schuh,et al.  Effective transport properties of random composites: continuum calculations versus mapping to a network. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Timofey Frolov,et al.  Molecular dynamics modeling of self-diffusion along a triple junction , 2009, 1302.1962.

[24]  Christopher A. Schuh,et al.  Diffusion on grain boundary networks: Percolation theory and effective medium approximations , 2006 .

[25]  M. Frary,et al.  Connectivity and percolation behaviour of grain boundary networks in three dimensions , 2005 .

[26]  Wei Yang,et al.  Enhanced diffusivity by triple junction networks , 2005 .

[27]  R. Kirchheim Solid Solutions of Hydrogen in Complex Materials , 2005 .

[28]  G. Palumbo,et al.  The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P , 2003 .

[29]  V. Ivanov,et al.  Direct experimental observation of accelerated Zn diffusion along triple junctions in Al , 2001 .

[30]  D. McLachlan Analytical Functions for the dc and ac Conductivity of Conductor-Insulator Composites , 2000 .

[31]  I. Balberg,et al.  Limits on the continuum-percolation transport exponents , 1998 .

[32]  S. Meguid,et al.  Hydrogen diffusion and intergranular cracking in nickel , 1997 .

[33]  A. M. Brass,et al.  Accelerated diffusion of hydrogen along grain boundaries in nickel , 1996 .

[34]  G. Palumbo,et al.  The influence of intercrystalline defects on hydrogen activity and transport in nickel , 1995 .

[35]  F. Froes,et al.  Grain size effects in nanocrystalline materials , 1992 .

[36]  I. Chenerie,et al.  Modeling the Permittivity of Composite Materials with a General Effective Medium Equation , 1992 .

[37]  H. H. Johnson,et al.  Transient analysis of hydrogen permeation through nickel membranes , 1991 .

[38]  J. Cahoon,et al.  Theoretical modeling of gain boundary diffusion of hydrogen and its effect on permeation curves , 1991 .

[39]  G. Palumbo,et al.  On the contribution of triple junctions to the structure and properties of nanocrystalline materials , 1990 .

[40]  D. McLachlan,et al.  An equation for the conductivity of binary mixtures with anisotropic grain structures , 1987 .

[41]  D. McLachlan,et al.  Equations for the conductivity of macroscopic mixtures , 1986 .

[42]  Jai-Young Lee,et al.  The trapping and transport phenomena of hydrogen in nickel , 1986 .

[43]  G. Pressouyre A classification of hydrogen traps in steel , 1979 .

[44]  Y. Ebisuzaki,et al.  Diffusion and Solubility of Hydrogen in Single Crystals of Nickel and Nickel—Vanadium Alloy , 1967 .

[45]  Z. Stachurski,et al.  The adsorption and diffusion of electrolytic hydrogen in palladium , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  L. G. Harrison Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides , 1961 .