Finding ground states of Sherrington-Kirkpatrick spin glasses with hierarchical boa and genetic algorithms

This study focuses on the problem of finding ground states of random instances of the Sherrington-Kirkpatrick (SK) spin-glass model with Gaussian couplings. While the ground states of SK spin-glass instances can be obtained with branch and bound, the computational complexity of branch and bound yields instances of not more than approximately 90 spins. We describe several approaches based on the hierarchical Bayesian optimization algorithm (hBOA) to reliably identify ground states of SK instances intractable with branch and bound, and present a broad range of empirical results on such problem instances. We argue that the proposed methodology holds a big promise for reliably solving large SK spin-glass instances to optimality with practical time complexity. The proposed approaches to identifying global optima reliably can also be applied to other problems and can be used with many other evolutionary algorithms. Performance of hBOA is compared to that of the genetic algorithm with two common crossover operators.

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  S. Kobe,et al.  Exact ground state of finite amorphous Ising systems , 1978 .

[3]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[4]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[5]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[6]  S. Kobe,et al.  A recursive branch-and-bound algorithm for the exact ground state of Ising spin-glass models , 1984 .

[7]  Editors , 1986, Brain Research Bulletin.

[8]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[9]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[12]  G. Paladin,et al.  Replica trick and fluctuations in disordered systems , 1992 .

[13]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[14]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[15]  A. K. Hartmann,et al.  Cluster-exact approximation of spin glass groundstates , 1995 .

[16]  Károly F. Pál,et al.  The ground state energy of the Edwards-Anderson Ising spin glass with a hybrid genetic algorithm , 1996 .

[17]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[18]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[19]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[20]  David Maxwell Chickering,et al.  A Bayesian Approach to Learning Bayesian Networks with Local Structure , 1997, UAI.

[21]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[22]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[23]  P. Bosman,et al.  Continuous iterated density estimation evolutionary algorithms within the IDEA framework , 2000 .

[24]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[25]  David E. Goldberg,et al.  Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .

[26]  A. Hartmann Ground-state clusters of two-, three-, and four-dimensional +/-J Ising spin glasses. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[28]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[29]  Finding Low-Temperature States With Parallel Tempering, Simulated Annealing And Simple Monte Carlo , 2002, cond-mat/0209248.

[30]  S. Kobe Ground-state energy and frustration of the Sherrington-Kirkpatrick model and related models , 2003, cond-mat/0311657.

[31]  J. Bouchaud,et al.  Energy exponents and corrections to scaling in Ising spin glasses , 2002, cond-mat/0212070.

[32]  A. Young,et al.  Interface energies in ising spin glasses. , 2002, Physical review letters.

[33]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[34]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[35]  Matteo Palassini,et al.  Ground-state energy fluctuations in the Sherrington–Kirkpatrick model , 2003, cond-mat/0307713.

[36]  Martin Pelikan,et al.  Computational Complexity and Simulation of Rare Events of Ising Spin Glasses , 2004, GECCO.

[37]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[38]  Franz Rothlauf,et al.  Evaluation-Relaxation Schemes for Genetic and Evolutionary Algorithms , 2004 .

[39]  H. Rieger,et al.  Recent Progress in Spin Glasses , 2003, cond-mat/0312432.

[40]  Robin Höns,et al.  Estimation of distribution algorithms and minimum relative entropy , 2005 .

[41]  H. Katzgraber,et al.  Universality-class dependence of energy distributions in spin glasses , 2005, cond-mat/0506209.

[42]  Martin Pelikan,et al.  Bayesian Optimization Algorithm , 2005 .

[43]  S. Boettcher Extremal optimization for Sherrington-Kirkpatrick spin glasses , 2004, cond-mat/0407130.

[44]  Roberto Santana,et al.  Estimation of Distribution Algorithms with Kikuchi Approximations , 2005, Evolutionary Computation.

[45]  D. Goldberg,et al.  Sporadic Model Building for Efficiency Enhancement of hBOA Martin Pelikan , 2005 .

[46]  Siddhartha Shakya,et al.  Solving the Ising Spin Glass Problem using a Bivariate EDA based on Markov Random Fields , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[47]  David E. Goldberg,et al.  Efficiency Enhancement of Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[48]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO '06.

[49]  Martin Pelikan,et al.  Searching for Ground States of Ising Spin Glasses with Hierarchical BOA and Cluster Exact Approximation , 2006, Scalable Optimization via Probabilistic Modeling.

[50]  K. F. Pál,et al.  Hysteretic optimization for the Sherrington Kirkpatrick spin glass , 2006 .

[51]  M. Talagrand The parisi formula , 2006 .

[52]  H. Katzgraber,et al.  Probing tails of energy distributions using importance-sampling in the disorder with a guiding function , 2006, cond-mat/0603290.

[53]  A. Billoire Some aspects of infinite range models of spin glasses: theory and numerical simulations , 2007, 0709.1552.

[54]  Helmut G. Katzgraber,et al.  Spin glasses and algorithm benchmarks: A one-dimensional view , 2007, 0711.1532.