FEEDBACK FROM MASS OUTFLOWS IN NEARBY ACTIVE GALACTIC NUCLEI. I. ULTRAVIOLET AND X-RAY ABSORBERS

We present an investigation into the impact of feedback from outflowing UV and X-ray absorbers in nearby (z < 0.04) active galactic nuclei (AGNs). From studies of the kinematics, physical conditions, and variability of the absorbers in the literature, we calculate the possible ranges in the total mass outflow rate () and kinetic luminosity (L KE) for each AGN, summed over all of its absorbers. These calculations make use of values (or limits) for the radial locations of the absorbers determined from variability, excited-state absorption, and other considerations. From a sample of 10 Seyfert 1 galaxies with detailed photoionization models for their absorbers, we find that 7 have sufficient constraints on the absorber locations to determine and L KE. For the low-luminosity AGN NGC?4395, these values are low, although we do not have sufficient constraints on the X-ray absorbers to make definitive conclusions. At least five of the six Seyfert 1s with moderate bolometric luminosities (L bol = 1043 ? 1045?erg?s?1) have mass outflow rates that are 10-1000?times the mass accretion rates needed to generate their observed luminosities, indicating that most of the mass outflow originates from outside the inner accretion disk. Three of these (NGC?4051, NGC?3516, and NGC?3783) have L KE in the range 0.5%-5% L bol, which is the range typically required by feedback models for efficient self-regulation of black hole and galactic bulge growth. At least two of the other three (NGC?5548, NGC?4151, and NGC?7469) have L KE 0.1%L bol, although these values may increase if radial locations can be determined for more of the absorbers. We conclude that the outflowing UV and X-ray absorbers in moderate-luminosity AGNs have the potential to deliver significant feedback to their environments.

[1]  K. Korista,et al.  On the Column Density of AGN Outflows: The Case of NGC 5548 , 2001, astro-ph/0107472.

[2]  B. M. Peterson,et al.  Simultaneous Ultraviolet and X-Ray Observations of Seyfert Galaxy NGC 4151. I. Physical Conditions in the X-Ray Absorbers , 2005, astro-ph/0507354.

[3]  Space Telescope Imaging Spectrograph Echelle Observations of the Seyfert Galaxy NGC 4151: Physical Conditions in the Ultraviolet Absorbers* , 2001, astro-ph/0101037.

[4]  Gerard A. Kriss,et al.  A High Signal-to-Noise Ultraviolet Spectrum of NGC 7469: New Support for Reprocessing of Continuum Radiation* , 2000 .

[5]  Jelle S. Kaastra,et al.  Chemical Abundances in an AGN Environment: X-Ray/UV Campaign on the Markarian 279 Outflow , 2006, astro-ph/0611928.

[6]  D. Crenshaw,et al.  Variable Ultraviolet Absorption in the Seyfert 1 Galaxy NGC 3516: The Case for Associated Ultraviolet and X-Ray Absorption , 2002, astro-ph/0205389.

[7]  H. Schmitt,et al.  Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN , 2010, 1011.4213.

[8]  K. Korista,et al.  MASS OUTFLOW IN THE SEYFERT 1 GALAXY NGC 5548 , 2009, 0902.2310.

[9]  A. Brinkman,et al.  Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers , 2003, astro-ph/0305154.

[10]  Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. IV. The Variable UV Absorption Lines , 2008, 0804.0218.

[11]  Bradley M. Peterson,et al.  An Introduction to Active Galactic Nuclei: Frontmatter , 1997 .

[12]  Y. Krongold,et al.  The Compact, Conical, Accretion-Disk Warm Absorber of the Seyfert 1 Galaxy NGC?4051 and Its Implications for IGM-Galaxy Feedback Processes , 2007, astro-ph/0702399.

[13]  J. C. Shields,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. IV. Variability and Modeling of the 900 Kilosecond Chandra Spectrum , 2003, astro-ph/0309096.

[14]  B. Peterson,et al.  A Reverberation-based Mass for the Central Black Hole in NGC 4151 , 2006, astro-ph/0607085.

[15]  MULTIWAVELENGTH MONITORING OF THE DWARF SEYFERT 1 GALAXY NGC 4395. I. A REVERBERATION-BASED MEASUREMENT OF THE BLACK HOLE MASS , 2005, astro-ph/0506665.

[16]  L. Ho,et al.  Physical Conditions in the Emission-Line Gas in the Extremely Low Luminosity Seyfert Nucleus of NGC 4395 , 1999, astro-ph/9902163.

[18]  O. University,et al.  Opacity Variations in the Ionized Absorption in NGC 3783: A Compact Absorber , 2004, astro-ph/0411554.

[19]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[20]  Reddening, Emission-Line, and Intrinsic Absorption Properties in the Narrow-Line Seyfert 1 Galaxy Arakelian 564* , 2001, astro-ph/0110303.

[21]  J. Ostriker,et al.  FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES. III. MODELS WITH BOTH RADIATIVE AND MECHANICAL FEEDBACK , 2010, 1003.0578.

[22]  E. Scannapieco,et al.  Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.

[23]  D. Crenshaw,et al.  Intrinsic Absorption Lines in the Seyfert 1 Galaxy NGC 5548: Ultraviolet Echelle Spectra from the Space Telescope Imaging Spectrograph , 1999, astro-ph/9903439.

[24]  D. Crenshaw,et al.  Mass Outflow from the Nucleus of the Seyfert 1 Galaxy NGC 4151 , 2006, astro-ph/0612446.

[25]  L. Ho,et al.  High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption , 2004, astro-ph/0405354.

[26]  Anu,et al.  Contrasting the Ultraviolet and X-Ray O VI Column Density Inferred for the Outflow in NGC 5548 , 2003, astro-ph/0303425.

[27]  S. Mathur,et al.  Multiple Velocity Components in the C IV Absorption Line of NGC 5548 , 1998, astro-ph/9901275.

[28]  M. C. Bentz,et al.  REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES , 2010, 1006.4160.

[29]  Cambridge,et al.  Ionized Absorbers in Active Galactic Nuclei: The Role of Collisional Ionization and Time-evolving Photoionization , 1998 .

[30]  M. Bottorff,et al.  Complex X-Ray Absorption and the Fe Kα Profile in NGC 3516 , 2004, astro-ph/0409091.

[31]  L. Ho,et al.  Erratum: “Multiwavelength Monitoring of the Dwarf Seyfert 1 Galaxy NGC 4395. I. A Reverberation-based Measurement of the Black Hole Mass” (ApJ, 632, 799 [2005]) , 2006 .

[32]  Stephen P. Maran,et al.  Intrinsic Absorption Lines in Seyfert 1 Galaxies. I. Ultraviolet Spectra from the Hubble Space Telescope , 1998, astro-ph/9812265.

[33]  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[34]  K. Leighly,et al.  A Chandra HETGS Observation of the Narrow-Line Seyfert 1 Galaxy Arakelian 564 , 2003, astro-ph/0312004.

[35]  K. Korista,et al.  VARIABLE INTRINSIC ABSORPTION IN Mrk 279 , 2008, 0812.0506.

[36]  D. York,et al.  A CATALOG OF BROAD ABSORPTION LINE QUASARS IN SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 , 2008, 0810.2747.

[37]  L. Miller,et al.  X-RAY CHARACTERISTICS OF NGC 3516: A VIEW THROUGH THE COMPLEX ABSORBER , 2011, 1103.3709.

[38]  R. Weymann,et al.  GHRS Monitoring of the Outflowing Material in NGC 4151 , 1996, astro-ph/9610227.

[39]  D. Crenshaw,et al.  The Connection between the Narrow-Line Region and the UV Absorbers in Seyfert Galaxies , 2005, astro-ph/0501257.

[40]  J. Hutchings,et al.  Intrinsic Absorption in the Spectrum of NGC 7469: Simultaneous Chandra, FUSE, and STIS Observations , 2005, astro-ph/0509349.

[41]  D. Crenshaw,et al.  The Kinematics and Physical Conditions of the Ionized Gas in Markarian 509. II. STIS Echelle Observations , 2002, astro-ph/0208478.

[42]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[43]  Gerard A. Kriss,et al.  Warm Absorbers in Active Galactic Nuclei: A Multitemperature Wind , 2001 .

[44]  S. Mathur,et al.  THE TWO-PHASE, TWO-VELOCITY IONIZED ABSORBER IN THE SEYFERT 1 GALAXY NGC 5548 , 2010, 1001.5070.

[45]  H. Netzer RADIATION PRESSURE FORCE AND BLACK HOLE MASS DETERMINATION IN LOW-REDSHIFT TYPE-I AND TYPE-II ACTIVE GALACTIC NUCLEI , 2008, 0811.3251.

[46]  The Weak Absorbing Outflow in AGN Mrk 279: Evidence of Supersolar Metal Abundances , 2006, astro-ph/0611578.

[47]  The ionized gas and nuclear environment in NGC 3783. II. Averaged Hubble Space Telescope/STIS and far ultraviolet spectroscopic explorer spectra , 2003 .

[48]  M. Brotherton,et al.  Accepted for Publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 ON THE FRACTION OF QUASARS WITH OUTFLOWS , 2022 .

[49]  J. C. Shields,et al.  The Ionized Gas and Nuclear Environment in NGC 3783. II. Averaged Hubble Space Telescope/STIS and Far Ultraviolet Spectroscopic Explorer Spectra , 2003, astro-ph/0506323.