Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise

This paper proposes two new fault-tolerant controlled deterministic secure quantum communication (CDSQC) protocols based only on Einstein–Podolsky–Rosen (EPR) entangled states. The proposed protocols are designed to be robust against the collective-dephasing noise and the collective-rotation noise, respectively. Compared to the existing fault-tolerant controlled quantum communication protocols, the proposed protocols not only can do without a quantum channel between the receiver and the controller as the state-of-the-art protocols do, but also have the advantage that the number of quantum particles required in the CDSQC protocols is reduced owing to the use of the simplest entangled states.

[1]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[2]  Tian-Yin Wang,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM ENCRYPTION , 2008 .

[3]  Liu Wenyu,et al.  A New Quantum Secure Direct Communication Protocol Using Decoherence-Free Subspace , 2007 .

[4]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[5]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005, 0705.1746.

[6]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[7]  Su-Juan Qin,et al.  Comment on “Controlled DSQC using five-qubit entangled states and two-step security test” , 2009 .

[8]  Liang Hao,et al.  QUANTUM DIRECT COMMUNICATION BASED ON QUANTUM SEARCH ALGORITHM , 2010 .

[9]  T. Hwang,et al.  Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel , 2014 .

[10]  Su-Juan Qin,et al.  An external attack on the Brádler–Dušek protocol , 2007 .

[11]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[12]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[13]  Man Zhong-xiao,et al.  Controlled Quantum N-Party Simultaneous Direct Communication , 2007 .

[14]  Wen Qiao-Yan,et al.  A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol , 2008 .

[15]  Icy Lee,et al.  ESL learners' performance in error correction in writing: Some implications for teaching , 1997 .

[16]  Quan Zhang,et al.  Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state , 2006 .

[17]  E. Candès,et al.  Error correction via linear programming , 2005, FOCS 2005.

[18]  Ping Zhou,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2005 .

[19]  Li Dong,et al.  Secure four-site distribution and quantum communication of χ-type entangled states , 2011 .

[20]  Zhen Zhang,et al.  Linear Network Error Correction Codes in Packet Networks , 2008, IEEE Transactions on Information Theory.

[21]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[22]  Tzonelih Hwang,et al.  Dense coding using cluster states and its application on deterministic secure quantum communication , 2011 .

[23]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[24]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[25]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[26]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[27]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[28]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[29]  Su-Juan Qin,et al.  Cryptanalysis and improvement of a secure quantum sealed-bid auction , 2009 .

[30]  T. Hwang,et al.  Comment on: Supervisory Asymmetric Deterministic Secure Quantum Communication , 2012 .

[31]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[32]  Li Dong,et al.  A revised controlled deterministic secure quantum communication with five-photon entangled state , 2010 .

[33]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[34]  李春燕,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[35]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[36]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[37]  Qing-yu Cai,et al.  Deterministic secure communication protocol without using entanglement , 2003 .

[38]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[39]  Qiaoyan Wen,et al.  Quantum secure direct communication over the collective amplitude damping channel , 2009 .

[40]  Chia-Wei Tsai,et al.  Enhanced Multiparty Controlled QSDC Using GHZ State , 2011 .

[41]  Zhou Ping,et al.  Quantum Secure Direct Communication Network with Two-Step Protocol , 2006 .

[42]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[43]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[44]  Tzonelih Hwang,et al.  Quantum Secure Direct Communication between Two Strangers , 2014 .

[45]  T. Hwang,et al.  Controlled Deterministic Secure Quantum Communication Based on Quantum Search Algorithm , 2012 .

[46]  Wei Huang,et al.  Cryptanalysis and improvement of a quantum communication-based online shopping mechanism , 2014, Quantum Inf. Process..

[47]  Ping Zhou,et al.  Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs , 2006 .

[48]  Li Dong,et al.  Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test , 2009 .

[49]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .