Symmetric function theory and unitary invariant ensembles

Representation theory and the theory of symmetric functions have played a central role in Random Matrix Theory in the computation of quantities such as joint moments of traces and joint moments of characteristic polynomials of matrices drawn from the Circular Unitary Ensemble and other Circular Ensembles related to the classical compact groups. The reason is that they enable the derivation of exact formulae, which then provide a route to calculating the large-matrix asymptotics of these quantities. We develop a parallel theory for the Gaussian Unitary Ensemble of random matrices, and other related unitary invariant matrix ensembles. This allows us to write down exact formulae in these cases for the joint moments of the traces and the joint moments of the characteristic polynomials in terms of appropriately defined symmetric functions. For the joint moments of the traces, we use the resulting formula to determine the rate of approach to the central limit theorem when the matrix size tends to infinity.

[1]  J. P. Keating,et al.  Autocorrelation of Random Matrix Polynomials , 2002, math-ph/0208007.

[2]  N. Simm Central limit theorems for the real eigenvalues of large Gaussian random matrices , 2015, 1512.01449.

[3]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[4]  Jonathan Breuer,et al.  A universality theorem for ratios of random characteristic polynomials , 2012, J. Approx. Theory.

[5]  P. Forrester,et al.  Moments of the Gaussian $\beta$ Ensembles and the large-$N$ expansion of the densities , 2013, 1310.8498.

[6]  C. L. Frenzen Error bounds for asymptotic expansions of the ratio of two gamma functions , 1987 .

[7]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[8]  T. Grava,et al.  Laguerre Ensemble: Correlators, Hurwitz Numbers and Hodge Integrals , 2019, Annales Henri Poincaré.

[9]  Eugene Strahov,et al.  Products and ratios of characteristic polynomials of random Hermitian matrices , 2003 .

[10]  On the number of rim hook tableaux , 1997 .

[11]  QUANTITATIVE NORMAL APPROXIMATION OF LINEAR STATISTICS OF β-ENSEMBLES BY GAULTIER LAMBERT1, , 2018 .

[12]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[13]  M. Shcherbina Central limit theorem for linear eigenvalue statistics of orthogonally invariant matrix models , 2007, 0711.1718.

[14]  P. Kopel Regularity Conditions for Convergence of Linear Statistics of GUE , 2015, 1510.02988.

[15]  Yuval Roichman,et al.  Upper bound on the characters of the symmetric groups , 1996 .

[16]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[17]  Khanh Duy Trinh,et al.  Gaussian Beta Ensembles at High Temperature: Eigenvalue Fluctuations and Bulk Statistics , 2016, Journal of Statistical Physics.

[18]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[19]  Edouard Brézin,et al.  Characteristic Polynomials of Random Matrices , 2000 .

[20]  Characteristic polynomials of random Hermitian matrices and Duistermaat–Heckman localisation on non-compact Kähler manifolds , 2002, math-ph/0201045.

[21]  Daniel Bump,et al.  On the Averages of Characteristic Polynomials From Classical Groups , 2005 .

[22]  S. Berezin,et al.  On the Rate of Convergence in the Central Limit Theorem for Linear Statistics of Gaussian, Laguerre, and Jacobi Ensembles , 2019, 1904.09685.

[23]  A. Borodin On a family of symmetric rational functions , 2014, 1410.0976.

[24]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[25]  S. Serfaty,et al.  CLT for fluctuations of $\beta$-ensembles with general potential , 2017, 1706.09663.

[26]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[27]  Alan Edelman,et al.  MOPS: Multivariate orthogonal polynomials (symbolically) , 2004, J. Symb. Comput..

[28]  Quantitative normal approximation of linear statistics of $\beta$-ensembles , 2017, The Annals of Probability.

[30]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[31]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[32]  Yan V. Fyodorov,et al.  Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002 .

[33]  M. Larsen,et al.  Characters of symmetric groups: sharp bounds and applications , 2008 .

[34]  N. Simm,et al.  Communications in Mathematical Physics Moments of Random Matrices and Hypergeometric Orthogonal Polynomials , 2019 .

[35]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[36]  G. Parisi,et al.  Planar diagrams , 1978 .

[37]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[38]  S. Berezin,et al.  On the Rate of Convergence in the Central Limit Theorem for Linear Statistics of Laguerre Ensembles , 2019 .

[39]  Yan V. Fyodorov,et al.  An exact formula for general spectral correlation function of random Hermitian matrices , 2002, math-ph/0204051.

[40]  Kyu-Hwan Lee,et al.  Auto-correlation functions of Sato–Tate distributions and identities of symplectic characters , 2020, Advances in Mathematics.

[41]  On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble , 2002, hep-th/0205215.

[42]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[43]  C. Itzykson,et al.  Matrix integration and combinatorics of modular groups , 1990 .

[44]  The Calogero-Sutherland model and polynomials with prescribed symmetry , 1996, solv-int/9609010.

[45]  E. Strahov,et al.  Averages of Characteristic Polynomials in Random Matrix Theory , 2004 .

[46]  Francesco Mezzadri,et al.  On the moments of characteristic polynomials , 2021, Glasgow Mathematical Journal.

[47]  Limiting laws of linear eigenvalue statistics for Hermitian matrix models , 2006, math/0608719.

[48]  John McKay,et al.  The largest degrees of irreducible characters of the symmetric group , 1976 .

[49]  F. Mezzadri,et al.  Rate of convergence of linear functions on the unitary group , 2010, 1009.0695.

[50]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[51]  On characteristic polynomials for a generalized chiral random matrix ensemble with a source , 2017, 1711.07061.

[52]  Anas A. Rahman,et al.  Large $N$ expansions for the Laguerre and Jacobi $\beta$ ensembles from the loop equations , 2017, 1707.04842.

[53]  Junesang Choi,et al.  Some mathematical constants , 2007, Appl. Math. Comput..

[54]  S. Serfaty,et al.  CLT for Fluctuations of β -ensembles with general potential , 2017 .

[55]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[56]  A. Guionnet,et al.  Asymptotic Expansion of β Matrix Models in the One-cut Regime , 2011, Communications in Mathematical Physics.

[57]  T. H. Baker,et al.  Finite-N fluctuation formulas for random matrices , 1997 .

[58]  A two-dimensional model for mesons , 1974 .

[59]  F. D. Cunden,et al.  Integer moments of complex Wishart matrices and Hurwitz numbers , 2018, Annales de l’Institut Henri Poincaré D.

[60]  F. Mezzadri,et al.  Moments of the eigenvalue densities and of the secular coefficients of β-ensembles , 2015, 1510.02390.

[61]  Alexander P. Veselov,et al.  Jacobi-Trudy formula for generalised Schur polynomials , 2009, 0905.2557.

[62]  Kurt Johansson,et al.  ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .

[63]  Peter J. Forrester,et al.  The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source , 2012, 1203.5838.

[64]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[65]  B. Dubrovin,et al.  Generating series for GUE correlators , 2016, 1604.07628.