Hippocampal sclerosis revisited

[1]  M. During,et al.  Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain , 1993, The Lancet.

[2]  J. Olney,et al.  Kainic acid: a powerful neurotoxic analogue of glutamate. , 1974, Brain research.

[3]  G. Holmes,et al.  Effects of kainic acid on seizure susceptibility in the developing brain. , 1988, Brain research.

[4]  J. Oxbury,et al.  Hippocampal neuron loss in temporal lobe epilepsy: Correlation with early childhood convulsions , 1987, Annals of neurology.

[5]  G. Mathieson Pathology of temporal lobe foci. , 1975, Advances in neurology.

[6]  T L Babb,et al.  Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model. , 1993, Electroencephalography and clinical neurophysiology.

[7]  T L Babb,et al.  Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures. , 1995, Journal of neurosurgery.

[8]  C. Ribak,et al.  Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. , 1995, Neuroreport.

[9]  A. Berg,et al.  The risk of seizure recurrence following a first unprovoked seizure , 1991, Neurology.

[10]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[11]  A. Olivier Temporal resections in the surgical treatment of epilepsy. , 1992, Epilepsy research. Supplement.

[12]  F. Bloom,et al.  Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats , 1983, Brain Research.

[13]  J. Olney,et al.  Acute dendrotoxic changes in the hippocampus of kainate treated rats , 1979, Brain Research.

[14]  R. S. Sloviter,et al.  The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy , 1994, Annals of neurology.

[15]  P. Stanton,et al.  Developmental differences in the neurobiology of epileptic brain damage. , 1992, Epilepsy research. Supplement.

[16]  R. S. Sloviter,et al.  “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine , 1985, Brain Research Bulletin.

[17]  A. M. Dam,et al.  Epilepsy and Neuron Loss in the Hippocampus , 1980, Epilepsia.

[18]  W. J. Brown,et al.  Distribution of Pyramidal Cell Density and Hyperexcitability in the Epileptic Human Hippocampal Formation , 1984, Epilepsia.

[19]  O. Ottersen,et al.  The role of epileptic activity in hippocampal and ‘remote’ cerebral lesions induced by kainic acid , 1980, Brain Research.

[20]  Z. Bortolotto,et al.  Long‐Term Effects of Pilocarpine in Rats: Structural Damage of the Brain Triggers Kindling and Spontaneous I Recurrent Seizures , 1991, Epilepsia.

[21]  S. Moshé,et al.  Developmental aspects of status epilepticus , 1992 .

[22]  G. Holmes,et al.  Mesial temporal sclerosis: pathogenesis and significance. , 1995, Pediatric neurology.

[23]  D. Spencer,et al.  A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy , 1991, Annals of neurology.

[24]  T L Babb,et al.  Childhood generalized and mesial temporal epilepsies demonstrate different amounts and patterns of hippocampal neuron loss and mossy fibre synaptic reorganization. , 1996, Brain : a journal of neurology.

[25]  Carl W. Cotman,et al.  Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid , 1980, Brain Research.

[26]  Wilder Bj The treatment of epilepsy: an overview of clinical practices. , 1995 .

[27]  K. E. Moore,et al.  A histological study of kainic acid-induced lesions in the rat brain , 1978, Brain Research.

[28]  J. Cavazos,et al.  Synaptic reorganization in the hippocampus induced by abnormal functional activity. , 1988, Science.

[29]  R. Sankar,et al.  Serum neuron-specific enolase is a marker for neuronal damage following status epilepticus in the rat , 1997, Epilepsy Research.

[30]  M. Giagheddu,et al.  Localized Epileptiform Activity Induced by Murine CRF in Rats , 1988, Epilepsia.

[31]  S. Heinemann,et al.  Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition , 1991, Science.

[32]  C. Cotman,et al.  Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  S. Spencer,et al.  Characteristics of intractable seizures following meningitis and encephalitis , 1992, Neurology.

[34]  F. Knudsen Effective short-term diazepam prophylaxis in febrile convulsions. , 1985, The Journal of pediatrics.

[35]  R. S. Sloviter,et al.  On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage , 1981, Neuropharmacology.

[36]  T. Baram,et al.  Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. , 1991, Brain research. Developmental brain research.

[37]  M. Goldberg,et al.  Non-NMDA receptor-mediated neurotoxicity in cortical culture , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Y. Ben‐Ari,et al.  Alterations of the GluR-B AMPA receptor subunit flip/flop expression in kainate-induced epilepsy and ischemia , 1993, Neuroscience.

[39]  M A Falconer,et al.  Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. , 1974, Lancet.

[40]  P. Seeburg,et al.  Glutamate receptor channels: novel properties and new clones. , 1992, Trends in pharmacological sciences.

[41]  Z. Bortolotto,et al.  The susceptibility of rats to pilocarpine-induced seizures is age-dependent. , 1987, Brain research.

[42]  A. Forsythe,et al.  Epilepsy and Mental Retardation Following Febrile Seizures In Childhood , 1989, Acta paediatrica Scandinavica.

[43]  G. Glaser,et al.  Socioeconomic Characteristics of Childhood Seizure Disorders in the New Haven Area: An Epidemiologic Study , 1979, Epilepsia.

[44]  S. Moshé,et al.  Infantile status epilepticus and future seizure susceptibility in the rat. , 1984, Brain research.

[45]  S. Moshé,et al.  Developmental regulation of glutamate and GABA(A) receptor gene expression in rat hippocampus following kainate-induced status epilepticus. , 1997, Developmental neuroscience.

[46]  G. Cascino,et al.  Mossy fiber synaptic reorganization in the epileptic human temporal lobe , 1989, Annals of neurology.

[47]  Thomas P. Sutula,et al.  Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis , 1990, Brain Research.

[48]  A. Berg,et al.  Unprovoked seizures in children with febrile seizures , 1996, Neurology.

[49]  T. Babb,et al.  The pathophysiologic relationships between lesion pathology, intracranial ictal EEG onsets, and hippocampal neuron losses in temporal lobe epilepsy , 1995, Epilepsy Research.

[50]  Y. Ben‐Ari,et al.  Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae , 1984, Neuroscience.

[51]  I. Germano,et al.  Increased seizure susceptibility in adult rats with neuronal migration disorders , 1997, Brain Research.

[52]  Y. Ben‐Ari,et al.  Maturation of kainic acid seizure-brain damage syndrome in the rat. i. clinical, electrographic and metabolic observations , 1984, Neuroscience.

[53]  O. Snead,et al.  Corticotropin‐releasing hormone–induced seizures in infant rats originate in the amygdala , 1992, Annals of neurology.

[54]  U. Ungerstedt,et al.  Seizure related elevations of extracellular amino acids in human focal epilepsy , 1992, Neuroscience Letters.

[55]  B. Meldrum,et al.  Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures , 1993, Epilepsy Research.

[56]  D. Fujikawa The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus , 1996, Brain Research.

[57]  W. J. Brown,et al.  Temporal Lobe Volumetric Cell Densities in Temporal Lobe Epilepsy , 1984, Epilepsia.

[58]  J. Olney GLUTAMATE‐INDUCED NEURONAL NECROSIS IN THE INFANT MOUSE HYPOTHALAMUS: An Electron Microscopic Study , 1971, Journal of neuropathology and experimental neurology.

[59]  S. Shinnar Prolonged febrile seizures and mesial temporal sclerosis , 1998, Annals of neurology.

[60]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[61]  P. Gloor,et al.  Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy , 1993, Neurology.

[62]  H. Matsui,et al.  In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amygdaloid kindled rat , 1992, Brain Research.

[63]  L. Friedman Selective reduction of GluR2 protein in adult hippocampal CA3 neurons following status epilepticus but prior to cell loss , 1998, Hippocampus.

[64]  P. Stanton,et al.  Resistance of the immature hippocampus to seizure-induced synaptic reorganization. , 1991, Brain research. Developmental brain research.

[65]  D. Spencer,et al.  Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination , 1993, Annals of neurology.

[66]  H. Bradford,et al.  Release of amino acids from the maturing cobalt-induced epileptic focus , 1976, Brain Research.

[67]  Julio Cesar Sampaio P. Leite,et al.  Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  Erratum: Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus (Epilepsia (1995) 36 (543-558)) , 1995 .

[69]  S L Moshé,et al.  Kainic Acid-Induced Seizures Enhance Dentate Gyrus Inhibition by Downregulation of GABAB Receptors , 1996, The Journal of Neuroscience.

[70]  T. Babb,et al.  The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. , 1995, Brain : a journal of neurology.

[71]  J. Olney,et al.  Excitotoxity and the NMDA receptor , 1987, Trends in Neurosciences.

[72]  F. Knudsen Febrile seizures — treatment and outcome , 1996, Brain and Development.

[73]  Z. Bortolotto,et al.  Spontaneous recurrent seizures in rats: An experimental model of partial epilepsy , 1990, Neuroscience & Biobehavioral Reviews.

[74]  J. Cavazos,et al.  Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions , 1998, Annals of neurology.

[75]  D. Riche,et al.  Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. , 1982, Electroencephalography and clinical neurophysiology.

[76]  E. Serafetinides,et al.  ETIOLOGY AND PATHOGENESIS OF TEMPORAL LOBE EPILEPSY. , 1964, Archives of neurology.

[77]  Nadler Jv Kainic acid as a tool for the study of temporal lobe epilepsy , 1981 .

[78]  S. Lipton,et al.  Excitatory amino acids as a final common pathway for neurologic disorders. , 1994, The New England journal of medicine.

[79]  C. Bruton,et al.  The neuropathology of temporal lobe epilepsy , 1988 .

[80]  JO McNamara,et al.  Cellular and molecular basis of epilepsy , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Jacqueline A. French,et al.  Characteristics of medial temporal lobe epilepsy , 1993 .

[82]  J. E. Franck,et al.  Physiologic and Morphologic Characteristics of Granule Cell Circuitry in Human Epileptic Hippocampus , 1995, Epilepsia.

[83]  J L Lear,et al.  Glycolysis-Induced Discordance between Glucose Metabolic Rates Measured with Radiolabeled Fluorodeoxyglucose and Glucose , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[84]  J. L. Stringer,et al.  Functional anatomy of hippocampal seizures , 1991, Progress in Neurobiology.

[85]  F. Dudek,et al.  Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats , 1988, Brain Research.

[86]  S. Moshé,et al.  Kainic-acid-induced seizures: a developmental study. , 1984, Brain research.

[87]  S. Moshé,et al.  Neuronal Migration Disorders Increase Susceptibility to Hyperthermia‐Induced Seizures in Developing Rats , 1996, Epilepsia.

[88]  CR Houser,et al.  Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  J. Duncan,et al.  Seizure characteristics, pathology, and outcome after temporal lobectomy , 1987, Neurology.

[90]  J H Margerison,et al.  Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. , 1966, Brain : a journal of neurology.

[91]  Corsellis Ja,et al.  Neuropathology of status epilepticus in humans. , 1983, Advances in neurology.

[92]  H. Braak,et al.  Topical Review: Functional Anatomy of Human Hippocampal Formation and Related Structures , 1996 .

[93]  D. Tauck,et al.  Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  H. Jasper,et al.  Localization of epileptic discharge in temporal lobe automatism. , 1952, Transactions of the American Neurological Association.

[95]  G. Lallement,et al.  Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus , 1991, Brain Research.

[96]  C. Cotman,et al.  Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells , 1978, Nature.

[97]  A. Scheibel,et al.  The Hippocampal‐Dentate Complex in Temporal Lobe Epilepsy , 1974, Epilepsia.

[98]  D. Pellegrini-Giampietro,et al.  Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[99]  R. C. Collins,et al.  Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates , 1981, Brain Research.

[100]  S Shinnar,et al.  THE EPIDEMIOLOGY OF EPILEPSY: Past, Present, and Future , 1996 .

[101]  N. Barbaro,et al.  Calcium‐binding protein (calbindin‐D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus , 1991, The Journal of comparative neurology.

[102]  C. Ribak,et al.  Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. , 1996, Brain research. Developmental brain research.

[103]  G. Holmes,et al.  Age-dependent effects of glutamate toxicity in the hippocampus. , 1996, Brain research. Developmental brain research.

[104]  S. Shorvon The Epidemiology and Treatment of Chronic and Refractory Epilepsy , 1996, Epilepsia.