Particle swarm optimisation with applications in power system generation
暂无分享,去创建一个
Today the modern power system is more dynamic and its operation is a subject to a number of constraints that are reflected in various management and planning tools used by system operators. In the case of hourly generation planning, Economic Dispatch (ED) allocates the outputs of all committed generating units, which are previously identified by the solution of the Unit Commitment (UC) problem. Thus, the accurate solutions of the ED and UC problems are essential in order to operate the power system in an economic and efficient manner. A number of computation techniques have progressively been proposed to solve these critical issues. One of them is a Particle Swarm Optimisation (PSO), which belongs to the evolutionary computation techniques, and it has attracted a great attention of the research community since it has been found to be extremely effective in solving a wide range of engineering problems. The attractive characteristics of PSO include: ease of implementation, fast convergence compared with the traditional evolutionary computation techniques and stable convergence characteristic. Although the PSO algorithms can converge very quickly towards the optimal solutions for many optimisation problems, it has been observed that in problems with a large number of suboptimal areas (i.e. multi-modal problems), PSO could get trapped in those local minima, including ED and UC problems. Aiming at enhancing the diversity of the traditional PSO algorithms, this thesis proposes a method of combining the PSO algorithms with a real-valued natural mutation (RVM) operator to enhance the global search capability and investigate the performance of the proposed algorithm compared with the standard PSO algorithms and other