Using all Metropolis-Hastings proposals to estimate mean values

Carbon fiber-polyetherimide matrix composites are provided, based on the use of polyetherimide having terminal nitro groups. The carbon fiber-polyetherimide composites have high strength, high modulus and superior solvent resistance.

[1]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  R. Tweedie,et al.  Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .

[4]  Jun S. Liu,et al.  Multipoint metropolis method with application to hybrid Monte Carlo , 2001 .

[5]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[6]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[7]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[8]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[9]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[10]  P. Green,et al.  Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .

[11]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[12]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[13]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[14]  Walter R. Gilks,et al.  Bayesian model comparison via jump diffusions , 1995 .

[15]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[16]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[17]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[18]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .