Using all Metropolis-Hastings proposals to estimate mean values
暂无分享,去创建一个
[1] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .
[2] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[3] R. Tweedie,et al. Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .
[4] Jun S. Liu,et al. Multipoint metropolis method with application to hybrid Monte Carlo , 2001 .
[5] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[6] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[7] Michael I. Miller,et al. REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .
[8] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[9] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[10] P. Green,et al. Metropolis Methods, Gaussian Proposals and Antithetic Variables , 1992 .
[11] W. Michael Conklin,et al. Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.
[12] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[13] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[14] Walter R. Gilks,et al. Bayesian model comparison via jump diffusions , 1995 .
[15] A. Barker. Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .
[16] D. B. Preston. Spectral Analysis and Time Series , 1983 .
[17] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[18] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .